微分方程求解的三种解析方法和Matlab实现:经典时域法(齐次解+特解,零状态+零输入),冲激响应卷积法、传递函数法

经典时域分析方法

  以例题的形式对经典时域解法(齐次解+特解)进行说明,最后进行总结。考虑如下形式微分方程:
y ′ ′ ( t ) + 5 y ′ ( t ) + 6 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) y''\left( t \right) + 5y'\left( t \right) + 6y\left( t \right) = 2f'\left( t \right) + 6f\left( t \right) y′′(t)+5y(t)+6y(t)=2f(t)+6f(t)

试求:当 f ( t ) = t 2 f(t)=t^2 f(t)=t2 y ( 0 ) = 1 y(0)=1 y(0)=1 y ′ ( 0 ) = 1 y'(0)=1 y(0)=1时的全解。

解: 对于激励 f ( t ) = t 2 f(t)=t^2 f(t)=t2,查表(不同形式激励对应的特解表达式见附录)可得特解表达式为:
y p ( t ) = P 2 t 2 + P 1 t + P 0 {y_p}\left( t \right) = {P_2}{t^2} + {P_1}t + {P_0} yp(t)=P2t2+P1t+P0
  建立等式关系,求解待定系数:
{ y p ′ ′ ( t ) + 5 y p ′ ( t ) + 6 y p ( t ) = 2 f ′ ( t ) + 6 f ( t ) → ( 2 P 2 ) + 5 ( 2 P 2 t + P 1 ) + 6 ( P 2 t 2 + P 1 t + P 0 ) = 4 t + 6 t 2 → ( 2 P 2 + 5 P 1 + 6 P 0 ) + ( 10 P 2 + 6 P 1 ) t + ( 6 P 2 ) t 2 = 4 t + 6 t 2 → { P 0 = 1 2 P 1 = − 1 P 2 = 1 \left\{ \begin{array}{l} y_p''\left( t \right) + 5y_p'\left( t \right) + 6y_p\left( t \right) = 2f'\left( t \right) + 6f\left( t \right)\\ \to \left( {2{P_2}} \right) + 5\left( {2{P_2}t + {P_1}} \right) + 6\left( { {P_2}{t^2} + {P_1}t + {P_0}} \right) = 4t + 6{t^2}\\ \to \left( {2{P_2} + 5{P_1} + 6{P_0}} \right) + \left( {10{P_2} + 6{P_1}} \right)t + \left( {6{P_2}} \right){t^2} = 4t + 6{t^2} \end{array} \right. \to \left\{ \begin{array}{l} {P_0} = \frac{1}{2}\\ {P_1} = - 1\\ {P_2} = 1 \end{array} \right. yp′′(t)+5yp(t)+6yp(t)=2f(t)+6f(t)(2P2)+5(2P2t+P1)+6(P2t2+P1t+P0)=4t+6t2(2P2+5P1+6P0)+(10P2+6P1)t+(6P2)t2=4t+6t2 P0=21P1=1P2=1
  特解表达式为:
y p ( t ) = t 2 − t + 1 2 {y_p}\left( t \right) = {t^2} - t + \frac{1}{2} yp(t)=t2t+21

  为求解齐次解,列写微分方程对应的特征方程:
λ 2 + 5 λ + 6 = 0 \lambda^2+5\lambda+6=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值