经典时域分析方法
以例题的形式对经典时域解法(齐次解+特解)进行说明,最后进行总结。考虑如下形式微分方程:
y ′ ′ ( t ) + 5 y ′ ( t ) + 6 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) y''\left( t \right) + 5y'\left( t \right) + 6y\left( t \right) = 2f'\left( t \right) + 6f\left( t \right) y′′(t)+5y′(t)+6y(t)=2f′(t)+6f(t)
试求:当 f ( t ) = t 2 f(t)=t^2 f(t)=t2, y ( 0 ) = 1 y(0)=1 y(0)=1, y ′ ( 0 ) = 1 y'(0)=1 y′(0)=1时的全解。
解: 对于激励 f ( t ) = t 2 f(t)=t^2 f(t)=t2,查表(不同形式激励对应的特解表达式见附录)可得特解表达式为:
y p ( t ) = P 2 t 2 + P 1 t + P 0 {y_p}\left( t \right) = {P_2}{t^2} + {P_1}t + {P_0} yp(t)=P2t2+P1t+P0
建立等式关系,求解待定系数:
{ y p ′ ′ ( t ) + 5 y p ′ ( t ) + 6 y p ( t ) = 2 f ′ ( t ) + 6 f ( t ) → ( 2 P 2 ) + 5 ( 2 P 2 t + P 1 ) + 6 ( P 2 t 2 + P 1 t + P 0 ) = 4 t + 6 t 2 → ( 2 P 2 + 5 P 1 + 6 P 0 ) + ( 10 P 2 + 6 P 1 ) t + ( 6 P 2 ) t 2 = 4 t + 6 t 2 → { P 0 = 1 2 P 1 = − 1 P 2 = 1 \left\{ \begin{array}{l} y_p''\left( t \right) + 5y_p'\left( t \right) + 6y_p\left( t \right) = 2f'\left( t \right) + 6f\left( t \right)\\ \to \left( {2{P_2}} \right) + 5\left( {2{P_2}t + {P_1}} \right) + 6\left( {
{P_2}{t^2} + {P_1}t + {P_0}} \right) = 4t + 6{t^2}\\ \to \left( {2{P_2} + 5{P_1} + 6{P_0}} \right) + \left( {10{P_2} + 6{P_1}} \right)t + \left( {6{P_2}} \right){t^2} = 4t + 6{t^2} \end{array} \right. \to \left\{ \begin{array}{l} {P_0} = \frac{1}{2}\\ {P_1} = - 1\\ {P_2} = 1 \end{array} \right. ⎩
⎨
⎧yp′′(t)+5yp′(t)+6yp(t)=2f′(t)+6f(t)→(2P2)+5(2P2t+P1)+6(P2t2+P1t+P0)=4t+6t2→(2P2+5P1+6P0)+(10P2+6P1)t+(6P2)t2=4t+6t2→⎩
⎨
⎧P0=21P1=−1P2=1
特解表达式为:
y p ( t ) = t 2 − t + 1 2 {y_p}\left( t \right) = {t^2} - t + \frac{1}{2} yp(t)=t2−t+21
为求解齐次解,列写微分方程对应的特征方程:
λ 2 + 5 λ + 6 = 0 \lambda^2+5\lambda+6=0