[LeetCode]516. 最长回文子序列[记忆化搜索解法详解]

本文解析了如何使用动态规划方法解决LeetCode上的一个问题,即在给定字符串中找到最长的回文子序列。通过定义状态变量dp[i][j]表示子串i到j的最长回文子序列长度,文章详细阐述了状态转移方程和递归过程。
摘要由CSDN通过智能技术生成

最长回文子序列

LeetCode 原题链接

题目

给你一个字符串 `s` ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1

输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。

示例 2:

输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。

提示

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

状态表示

  • dp[i][j]表示从索引i~j区间的字符的最大回文子串。

状态转移方程

s[i]!=s[j]

  • dfs[i][j] = max(dfs[i+1][j], dfs[i][j-1])

s[i]==s[j]

  • dfs[i][j] = dfs[i+1][j-1]+2

推导过程

在这里插入图片描述

LeetCode 代码

class Solution {
public:
    string st;
    vector<vector<int>> memo;
    int longestPalindromeSubseq(string s) {
        st = s;
        int n = s.size();
        memo.resize(n, vector<int>(n, -1));
        return dfs(0, n-1);
    }
    inline int dfs(int i, int j) {
        if (i > j) return 0;
        if (i == j) return 1;
        int &res = memo[i][j];
        if (res != -1) return res;
        if (st[i] == st[j]) {
            return res = 2 + dfs(i+1, j-1);
        } else {
            return res = max(dfs(i+1, j), dfs(i, j-1));
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值