【高等数学】第十章 -- 差分方程

快速定位💫

第一节 差分方程的基本概念

一、差分的概念

1.差分的定义

△ y x = y x + 1 − y x \bigtriangleup y_x=y_{x+1}-y_x yx=yx+1yx

2.一阶差分的性质

(1) △ ( C ) = 0 \triangle (C) = 0 (C)=0(C为常数);
(2) △ ( C y x ) = C △ y x \triangle(Cy_x)=C\triangle y_x (Cyx)=Cyx(C为常数);
(3) △ ( a y x ± b z x ) = a △ y x ± b △ z x \triangle(ay_x\pm bz_x)=a\triangle y_x \pm b \triangle z_x (ayx±bzx)=ayx±bzx(a,b为常数);
(4) △ ( y x ⋅ z x ) = y x + 1 △ z x + z x △ y x = y x △ z x + z x + 1 △ y x \triangle(y_x \cdot z_x)=y_{x+1}\triangle z_x+z_x\triangle y_x = y_x\triangle z_x + z_{x+1} \triangle y_x (yxzx)=yx+1zx+zxyx=yxzx+zx+1yx;
(5) △ ⟮ y x z x ⟯ = z x △ y x − y x △ z x z x z x + 1 = z x + 1 △ y x − y x + 1 △ z x z x z x + 1 , z x ≠ 0. \triangle \lgroup \frac{y_x}{z_x} \rgroup = \frac{z_x\triangle y_x-y_x\triangle z_x}{z_x z_{x+1}}=\frac{z_{x+1}\triangle y_x-y_{x+1}\triangle z_x}{z_x z_{x+1}}, z_x \neq 0. zxyx=zxzx+1zxyxyxzx=zxzx+1zx+1yxyx+1zx,zx=0.

3.高阶差分方程的定义

二阶差分方程

△ 2 y x = y x + 2 − 2 y x + 1 + y x . \triangle^{2}y_x=y_{x+2}-2y_{x+1}+y_x. 2yx=yx+22yx+1+yx.

三阶差分方程

△ 3 y x = y x + 3 − 3 y x + 2 + 3 y x + 1 − y x . \triangle^3y_x=y_{x+3}-3y_{x+2}+3y_{x+1}-y_x. 3yx=yx+33yx+2+3yx+1yx.

n n n阶差分方程

△ n y x = △ ( △ n − 1 y x ) . \triangle ^ny_x=\triangle(\triangle^{n-1}y_x). nyx=(n1yx).

二、差分方程的概念

定义 10.3

含有未知函数差分或表未知函数几个时期值的方程称为差分方程
F ( x , y x , △ y x , △ 2 y x , ⋯   , △ n y x ) = 0 , F(x, y_x, \triangle y_x, \triangle^2y_x, \cdots,\triangle^ny_x)=0, F(x,yx,yx,2yx,,nyx)=0,

G ( x , y x , y x + 1 , y x + 2 , ⋯   , y x + n ) = 0 , G(x, y_x, y_{x+1}, y_{x+2}, \cdots, y_{x+n})=0, G(x,yx,yx+1,yx+2,,yx+n)=0,

H ( x , y x , y x − 1 , ⋯   , y x − n ) = 0 ( 其中 x ≥ n ) . H(x,y_x,y_{x-1},\cdots,y_{x-n})=0(其中x\ge n). H(x,yx,yx1,,yxn)=0(其中xn).

定义 10.4

差分方程中未知函数最大下标与最小下标的差数称为差分方程的.

定义 10.5

满足差分方程的函数,称为差分方程的.

定义 10.6

所含任意独立常数的个数等于差分方程的阶数的解,称为差分方程的通解.

定义 10.7

差分方程附加的定解条件,称为差分方程的初始条件.通解中的任意常数由初始条件确定后的解称为差分方程的特解.

三、常系数线性差分方程解的结构

定义 10.8

如果未知函数和未知函数的各阶差分都是一次,则称方程为线性差分方程.

定理 10.1

若函数 y x ( 1 ) , y x ( 2 ) , ⋯   , y x ( k ) {y_x}^{(1)},{y_x}^{(2)},\cdots,{y_x}^{(k)} yx(1),yx(2),,yx(k)均是齐次线性差分方程的解,则这 k k k个函数的线性组合
y x = C 1 y x ( 1 ) + C 1 y x ( 2 ) + ⋯ + C k y x ( k ) y_x=C_1{y_x}^{(1)}+C_1{y_x}^{(2)}+\cdots+C_k{y_x}^{(k)} yx=C1yx(1)+C1yx(2)++Ckyx(k)
也是齐次差分方程(10-2)的解,其中 C k C_k Ck为任意常数.

定理 10.2

若函数 y x ( 1 ) , y x ( 2 ) , ⋯   , y x ( k ) {y_x}^{(1)},{y_x}^{(2)},\cdots,{y_x}^{(k)} yx(1),yx(2),,yx(k)是齐次线性差分方程的 n n n个线性无关的特解,则他们的线性组合
y x = C 1 y x ( 1 ) + C 1 y x ( 2 ) + ⋯ + C k y x ( k ) y_x=C_1{y_x}^{(1)}+C_1{y_x}^{(2)}+\cdots+C_k{y_x}^{(k)} yx=C1yx(1)+C1yx(2)++Ckyx(k)
是齐次差分方程(10-2)的通解,其中 C k C_k Ck为任意常数.

定理 10.3

y x ∗ {y_x}^* yx是非齐次线性差分方程(10-1)的一个特解, Y x Y_x Yx是其对应的齐次线性差分方程的通解,则非齐次线性差分方程的通解为
y x = Y + y x ∗ y_x=Y+{y_x}^* yx=Y+yx

定理 10.4

若函数 y x 1 ∗ {y_{x1}}^* yx1 y x 2 ∗ {y_{x2}}^* yx2分别是非齐次线性差分方程
y x + n + a 1 y x + n − 1 + ⋯ + a n − 1 y x + 1 + a n y x = f 1 ( x ) , y x + n + a 1 y x + n − 1 + ⋯ + a n − 1 y x + 1 + a n y x = f 2 ( x ) y_{x+n}+a_1y_{x+n-1}+\cdots+a_{n-1}y_{x+1}+a_ny_x=f_1(x),\\ y_{x+n}+a_1y_{x+n-1}+\cdots+a_{n-1}y_{x+1}+a_ny_x=f_2(x) yx+n+a1yx+n1++an1yx+1+anyx=f1(x),yx+n+a1yx+n1++an1yx+1+anyx=f2(x)
的特解,则 y x ∗ = y x 1 ∗ + y x 2 ∗ {y_x}^*={y_{x1}}^{*}+{{y_{x2}}^*} yx=yx1+yx2就是方程
y x + n + a 1 y x + n − 1 + ⋯ + a n − 1 y x + 1 + a n y x = f 1 ( x ) + f 2 ( x ) y_{x+n}+a_1y_{x+n-1}+\cdots+a_{n-1}y_{x+1}+a_ny_x=f_1(x)+f_2(x) yx+n+a1yx+n1++an1yx+1+anyx=f1(x)+f2(x)
的特解.

第二节 一阶常系数线性差分方程

一阶常系数齐次线性差分方程

y x + 1 − p y x = 0 y_{x+1}-py_x=0 yx+1pyx=0

一阶常系数非齐次线性差分方程

y x + 1 − p y x = f ( x ) y_{x+1}-py_x=f(x) yx+1pyx=f(x)

一、一阶常系数齐次差分方程

由此可见,一阶常系数齐次线性差分方程的通解是指数函数型.

1.迭代法

通解为:
y x = C p x y_x=Cp^x yx=Cpx

2.特征根法

y x = r x y_x=r^x yx=rx
r x + 1 − p r x = 0 r x ( r − p ) = 0 r − p = 0 r = p r^{x+1}-pr^x=0\\ r^x(r-p)=0\\ r-p=0\\ r=p rx+1prx=0rx(rp)=0rp=0r=p

二、一阶常系数非齐次线性差分方程

y x + 1 − p y x = P n ( x ) b x . y_{x+1}-py_x=P_n(x)b^x. yx+1pyx=Pn(x)bx.


y x ∗ = Q ( x ) b x {y_x}^*=Q(x)b^x yx=Q(x)bx
带入得到
b △ Q ( x ) + ( b − p ) Q x = P n ( x ) . b\triangle Q(x)+(b-p)Q_x=P_n(x). bQ(x)+(bp)Qx=Pn(x).

(1) b不是特征方程 r − p = 0 r-p=0 rp=0的根


y x ∗ = Q ( x ) b x {y_x}^*=Q(x)b^x yx=Q(x)bx

(2) b是特征方程 r − p = 0 r-p=0 rp=0的根


y x ∗ = x Q ( x ) b x {y_x}^*=xQ(x)b^x yx=xQ(x)bx
综上所述,解题步骤为

步骤过程
第一步计算齐次方程特征根 r r r的值
第二步根据非齐次方程 P n ( x ) b x P_n(x)b^x Pn(x)bx中的 b b b是否等于 r r r来判断 s s s
如果 s = r s=r s=r y x ∗ = x Q ( x ) b x {y_x}^*=xQ(x)b^x yx=xQ(x)bx
如果 s ≠ r s\neq r s=r y x ∗ = Q ( x ) b x {y_x}^*=Q(x)b^x yx=Q(x)bx

第三节 二阶常系数线性差分方程

二阶常系数非齐次线性差分方程的一般形式:
y x + 2 + p y x + 1 + q y x = f ( x ) . y_{x+2}+py_{x+1}+qy_x=f(x). yx+2+pyx+1+qyx=f(x).
二阶常系数齐次线性差分方程的一般形式:
y x + 2 + p y x + 1 + q y x = 0. y_{x+2}+py_{x+1}+qy_x=0. yx+2+pyx+1+qyx=0.

一、二阶常系数齐次线性差分方程


y x = r x y_x=r^x yx=rx
带入方程得
r x + 2 + p r x + 1 + q r x = 0 r^{x+2}+pr^{x+1}+qr^x=0 rx+2+prx+1+qrx=0
特征方程为:
r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
它的根就叫做特征根
r 1 , 2 = − p ± p 2 − 4 q 2 . r_{1,2}=\frac{-p\pm \sqrt{p^2-4q}}{2}. r1,2=2p±p24q .

(1) 相异实根

y x = C 1 r 1 x + C 2 r 2 x y_x=C_1r_1^x+C_2r_2^x yx=C1r1x+C2r2x

(2) 相同实根

y x = ( C 1 + C 2 x ) ( − p 2 ) x y_x=(C_1+C_2x)(-\frac{p}{2})^x yx=(C1+C2x)(2p)x

(3) 共轭复根

r 1 = α + i β , r 2 = α − i β α = − p 2 , β = 4 q − p 2 2 r_1=\alpha+i\beta, r_2=\alpha-i\beta\\ \alpha=-\frac{p}{2},\beta=\frac{\sqrt{4q-p^2}}{2} r1=α+iβ,r2=αiβα=2p,β=24qp2

通解为:
y 1 = λ x ( cos ⁡ θ x + sin ⁡ θ x ) . y_1=\lambda^x(\cos \theta x+\sin \theta x). y1=λx(cosθx+sinθx).
综上所述,解题步骤如下:

  • 第一步

    写出差分方程 y x + 2 + p y x + 1 + q y x y_{x+2}+py_{x+1}+qy_x yx+2+pyx+1+qyx的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0;

  • 第二步

    求出特征方程的两个根 r 1 , r 2 r_1,r_2 r1,r2;

  • 第三步

    根据情况写出通解.

特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的根差分方程 y x + 2 + p y x + 1 + q y x = 0 y_{x+2}+py_{x+1}+qy_x=0 yx+2+pyx+1+qyx=0的通解
两个不相等的实根 r 1 ≠ r 2 r_1\neq r_2 r1=r2 y x = C 1 r 1 x + C 2 r 2 x y_x=C_1r_1^x+C_2r_2^x yx=C1r1x+C2r2x
两个相等的实根 r 1 = r 2 r_1=r_2 r1=r2 y x = ( C 1 + C 2 x ) r 1 x y_x=(C_1+C_2x)r_1^x yx=(C1+C2x)r1x
一对共轭复根 r 1 , 2 = α + β r_{1,2}=\alpha+\beta r1,2=α+β y 1 = λ x ( cos ⁡ θ x + sin ⁡ θ x ) y_1=\lambda^x(\cos \theta x+\sin \theta x) y1=λx(cosθx+sinθx),其中 λ = α 2 + β 2 \lambda=\sqrt{{\alpha}^2+{\beta}^2} λ=α2+β2 , tan ⁡ θ = β α , θ ∈ ( 0 , π ) \tan\theta=\frac{\beta}{\alpha}, \theta\in (0, \pi) tanθ=αβ,θ(0,π)

二、二阶常系数非齐次线性差分方程

其形式如下:
y x + 2 + p y x + 1 + q y x = P n ( x ) b x . y_{x+2}+py_{x+1}+qy_x=P_n(x)b^x. yx+2+pyx+1+qyx=Pn(x)bx.
因此,设
y x ∗ = Q ( x ) b x y_x^*=Q(x)b^x yx=Q(x)bx
带入方程得
b 2 △ 2 Q x + b ( p + 2 b ) △ Q x + ( b 2 + p b + q ) Q x = P n ( x ) b^2\triangle^2Qx+b(p+2b)\triangle Qx+(b^2+pb+q)Q_x=P_n(x) b22Qx+b(p+2b)Qx+(b2+pb+q)Qx=Pn(x)

(1). b不是特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的根,

y x ∗ = Q n ( x ) b x . y_x^*=Q_n(x)b^x. yx=Qn(x)bx.

(2). 如果b是特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的单根,

y x ∗ = x Q n ( x ) b x . y_x^*=xQ_n(x)b^x. yx=xQn(x)bx.

(3). 如果b是特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0的重根,

y x ∗ = x 2 Q n ( x ) b x . y_x^*=x^2Q_n(x)b^x. yx=x2Qn(x)bx.

总结

一、二阶的常系数齐次差分方程微分方程的对比

特征方程的根微分方程的通解差分方程的通解
r 1 ≠ r 2 r_1\neq r_2 r1=r2 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x y x = C 1 r 1 x + C 2 r 2 x y_x=C_1r_1^x+C_2r_2^x yx=C1r1x+C2r2x
r 1 = r 2 r_1=r_2 r1=r2 y = ( C 1 + C 2 x ) e r 1 x y=(C_1+C_2x)e^{r_1x} y=(C1+C2x)er1x y x = ( C 1 + C 2 x ) r 1 x y_x=(C_1+C_2x)r_1^x yx=(C1+C2x)r1x
共轭复根 r 1 , 2 = α ± i β 共轭复根 r_{1,2}=\alpha\pm i\beta 共轭复根r1,2=α±iβ y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{\alpha x}(C_1cos\beta x+C_2sin\beta x) y=eαx(C1cosβx+C2sinβx) y 1 = λ x ( cos ⁡ θ x + sin ⁡ θ x ) y_1=\lambda^x(\cos \theta x+\sin \theta x) y1=λx(cosθx+sinθx),其中 λ = α 2 + β 2 \lambda=\sqrt{{\alpha}^2+{\beta}^2} λ=α2+β2 , tan ⁡ θ = β α , θ ∈ ( 0 , π ) \tan\theta=\frac{\beta}{\alpha}, \theta\in (0, \pi) tanθ=αβ,θ(0,π)

二、二阶的常系数非齐次差分方程微分方程的对比

特征根情况微分方程特征根情况差分方程
λ ≠ r 1 , 2 \lambda \neq r_{1,2} λ=r1,2 y ∗ = R ( x ) e λ x y^* = R(x)e^{\lambda x} y=R(x)eλx b ≠ r 1 , 2 b\neq r_{1,2} b=r1,2 y x ∗ = Q n ( x ) b x . y_x^*=Q_n(x)b^x. yx=Qn(x)bx.
λ = r 1 \lambda = r_1 λ=r1 or λ = r 2 \lambda =r_2 λ=r2 y ∗ = x R ( x ) e λ x y^* = xR(x)e^{\lambda x} y=xR(x)eλx b = r 1 b=r_1 b=r1 or b = r 2 b=r_2 b=r2 y x ∗ = x Q n ( x ) b x . y_x^*=xQ_n(x)b^x. yx=xQn(x)bx.
λ = r 1 = r 2 \lambda = r_1 = r_2 λ=r1=r2 y ∗ = x 2 R ( x ) e λ x y^* = x^2R(x)e^{\lambda x} y=x2R(x)eλx b = r 1 = r 2 b=r_1=r_2 b=r1=r2 y x ∗ = x 2 Q n ( x ) b x . y_x^*=x^2Q_n(x)b^x. yx=x2Qn(x)bx.
  • 24
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值