目录
文献阅读:基于自适应进化人工蜂群算法的混合bp神经网络模型用于水质指标预测
摘要
在本周中,通过阅读文献,了解了AEABC-BPNN水质预测模型,具体做法为:以生物群落中的蜜蜂为蓝本进行输入输出层的调控,分为工蜂、观察蜂、花蜜等。并且对比了多个机器学习的模型,证明了其中的可行性。在Fluent中,选用带扭曲插入物的管道中的流动,进行几何划分和设置求解。理论学习方面,对有限体积法中的对流项离散进行了学习。
Abstract
This week, I read the literature and learned about the AEABC-BPNN water quality prediction model, which is based on the bees in the biome to regulate the input and output layers, which are divided into worker bees, observation bees, nectar, etc. And a number of machine learning models were compared to prove the feasibility. In Fluent, I took the flow in a pipe with a twisted insert and solved the geometry and setup. In terms of theoretical learning, I studied the convection term discretization in the finite volume method.
文献阅读:基于自适应进化人工蜂群算法的混合bp神经网络模型用于水质指标预测
文献摘要
质数据序列是非光滑的、非线性的,不同的水质参数之间存在很强的耦合关系,并且相互影响,因此准确预测水质参数是一个不可避免的问题。文章利用人工蜂群(Artificial Bee Colony, ABC)算法建立了反向传播神经网络(Back Propagation Neural Network, BPNN)模型,并将动态自适应因子、概率选择和梯度初始化三种自适应进化策略相结合,形成了自适应进化人工蜂群(adaptive evolutionary Artificial Bee Colony, AEABC)算法。
实验结果表明,在这种情况下,AEABC-BPNN模型只需要14次迭代即可收敛。WQI预测可将误差评价指标均方误差(MSE)降低至0.2745,比其他算法至少降低25.2%,平均绝对百分比误差(MAPE)低于7.58%。在4个wqi中,预测区间覆盖率(PICP)达到100%。此外,还设计了鲁棒性测试实验,验证了在历史误差数据指导下,AEABC-BPNN模型在预测精度方面仍然优于其他算法。
文章以洛阳河流域为研究对象,重点研究了氢(pH)势、溶解氧(DO)势、化学需氧量(COD)势、氨氮(NH3- N)势、总磷(TP)势、水质等级(WQG)势等各种水质质量指标的高精度预测方法,并提出了AEABC-BPNN模型解决了水质质量指标的长尺度预测问题。此外,利用ABC对BP神经网络进行优化,并引入自适应进化策略(AES)对典型ABC进行优化,形成独特的AEABC-BPNN模型,并通过BPNN模型的非线性输入输出拟合函数对水质中各参数进行预测分析。该算法在自适应进化策略的作用下具有自更新和全局迭代更新的双重优势,从而揭示了上述WQI(如pH、DO、COD等)随时间变化的模式,并通过长达9个月的实例数据验证了模型的可靠性。
讨论|结论
在ML的三个分支(ANN, RNN和CNN)中,ANN模型结构最简单,可解释性最强。与传统的时间序列预测模型ARIMA相比,人工神经网络的预测效果有了明显的提高。将谱理论与混沌理论相结合,提出了河流水质动力学的小波极大Lyapunov指数(WMLE)混合模型,并发现混合模型在一定程度上优于纯Lyapunov指数模型、ARMA模型和ANN模型。
虽然ML模型具有更准确的预测功能,适合解决复杂的非线性问题,但仍然存在以下弱点:
- 目前大多数模型都面向短期预测方法,在长期预测方面显得薄弱。
- 在进行水质预测时,单个机器学习模型受固定模型参数的影响,需要针对不同的指标进行调整,为达到最佳预测效果,计算复杂度大大增加。
为了解决上述问题,人们提出了多模型集成方法来弥补单个ML模型的不足,其中自然启发(NI)模型是研究最广泛的模型之一。水环境中水质指标的非线性、随机性和依赖性使得传统水质预测模型的预测精度和鲁棒性普遍不高。BPNN具有从输入因素中提取非线性关系的能力,具有较高的可解释性,同时可以避免其局部收敛,因此本文选择BPNN作为预测算法。
由于BPNN较依赖于数据集的水平,当训练集数量未达到一定水平时,bp神经网络的输出精度较低;同时,BPNN的输入和输出节点数量随着具体问题的变化而变化。而太多的隐层节点将导致过度拟合,使得预测结果不准确,而在隐藏层节点太少会影响训练的神经网络训练集,限制从正确合适的输入和输出之间的非线性关系。因此,尽可能将水质预测模型的节点数设置在10个以下,且BPNN的整体结构尽可能限制在五层,比五层更深入的训练会适得其反。
BPNN由于其随机参数生成机制,容易出现局部最优,需要引入优化算法进行优化。本文采用ABC算法对BPNN模型进行优化。
ABC是一种受自然界蜂群协作启发的优化算法,具有收敛速度快、全局搜索能力强、优化性能强等特点。ABC-BPNN水质预测模型的求解目标是BPNN模型中连接的任意两个神经元之间的权值,包括输入层-隐含层权值和隐含层-输出层权值,
该模型融合了动态自适应权值、自适应轮盘规则和梯度初始化方法。并对ABC-BPNN模型进行了改进,形成了AEABC-BPNN优化算法模型。文章中利用该模型对洛阳河流域较长时期的水质量进行了预测。与传统的BPNN模型相比,AEABC-BPNN模型通过上述改进过程大大提高了BPNN模型的搜索性能和收敛速度,使其具有鲁棒性、更高的学习速度和更强的逼近能力。
与典型SVM、BPNN、GABPNN、PSO-BPNN、ABC-BPNN和LSTM模型的预测结果进行对比分析。结果表明,AEABC-BPNN具有较快的收敛速度,可在14代内实现收敛,最终得到最优平均适应度值为0.0322。与SVM、BP、GA-BP和PSO-BP模型相比,AEABC-BP模型的预测结果更加准确。
文中目前存在的不足:
- 应尝试调查小样本的预测能力。
- 需要添加通过对各种环境因子、WQI与预测WQI之间的关系进行相关性分析,可以提