筛质数(埃氏筛和线性筛)

埃氏筛:

#include<stdio.h>
int str[1000010],primes[1000010],cnt;
int shai(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(str[i]==0){
			primes[cnt++]=i;
			for(int j=i+i;j<=n;j=j+i)
			str[j]=1;
		}	
	}
	return cnt;
}
int main()
{
	int n;
	scanf("%d",&n);
	printf("%d",shai(n));
	return 0;
}

线性筛:(只会被最小质因子筛掉)

#include<stdio.h>
int str[1000010],primes[1000010],cnt;
int shai(int n)
{
	for(int i=2;i<=n;i++)
	{
		if(str[i]==0)primes[cnt++]=i;
		for(int j=0;primes[j]<=n/i;j++)
		{
			str[primes[j]*i]=1;
			if(i%primes[j]==0)break;	
		}
	}
	return cnt;
}
int main()
{
	int n,x;
	scanf("%d",&n);
	x=shai(n);
	printf("%d",x);
	return 0;
}

埃氏法(Eratosthenes法)和线性筛法(Linear Sieve)都是用于求解素数的算法。它们的主要区别在于选过程中的操作不同。 1. 埃氏法:埃氏法是一种古老的求解素数的算法,由古希腊数学家埃拉托斯特尼(Eratosthenes)提出。它的基本思想是从2开始,将所有2的倍数标记为非素数,然后找到下一个未被标记的数(即3),将所有3的倍数标记为非素数,依此类推。最后留下的未被标记的数就是素数。 C++实现埃氏法的代码如下: ```cpp #include <iostream> #include <vector> using namespace std; const int N = 1000000;vector<int> is_prime(N, true); void sieve_of_eratosthenes() { is_prime = is_prime = false; for (int i = 2; i * i < N; ++i) { if (is_prime[i]) { for (int j = i * i; j < N; j += i) { is_prime[j] = false; } } } } int main() { sieve_of_eratosthenes(); for (int i = 2; i < N; ++i) { if (is_prime[i]) { cout << i << " "; } } return 0; } ``` 2. 线性筛法:线性筛法是一种改进的埃氏法,它将选过程从平方根优化到线性时间。线性筛法的基本思想是对于每个素数p,选出所有小于等于p^2的合数。这样可以减少选的次数,提高效率。 C++实现线性筛法的代码如下: ```cpp #include <iostream> #include <vector> using namespace std; const int N = 1000000; vector<int> is_prime(N, true); vector<int> primes; void linear_sieve() { is_prime = is_prime = false; for (int p = 2; p * p < N; ++p) { if (is_prime[p]) { for (int i = p * p; i < N; i += p) { is_prime[i] = false; } } } for (int p = 2; p < N; ++p) { if (is_prime[p]) { primes.push_back(p); } } } int main() { linear_sieve(); for (int i = 0; i < primes.size(); ++i) { cout << primes[i] << " "; } return 0; } ``` 这两种算法都可以有效地求解素数,但线性筛法相对于埃氏法在选次数上有很大优势。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值