PyTorch的ONNX结合MNIST手写数字数据集的应用((1)

3、pth转onnx

我们根据上面的mnist.pth结构,自己来构造一个模型:

import torch
import torch.nn as nn
import torch.nn.functional as F

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.fc1   = nn.Linear(400, 120)
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)
 
    def forward(self, x):
        out = self.conv1(x) # torch.Size([1, 6, 26, 26])
        out = F.max_pool2d(F.relu(out), 2) # [1, 6, 13, 13]
        out = self.conv2(out) # [1, 16, 11, 11]
        out = F.max_pool2d(F.relu(out), 2)  # [1, 16, 5, 5]
        out = out.view(out.size(0), -1) # [1, 400]
        out = self.fc1(ou
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值