基于深度学习的苹果叶部病害图像目标检测系统

摘要

本文深入研究了基于YOLOv8的苹果叶部病害目标检测系统,核心基于YOLOv8模型进行优化改进,并将优化改进的YOLOv8模型与YOLOv8、YOLOv5、Faster-RCNN算法进行性能指标对比;根据用户不同需求,设计了简易版和复杂版两个版本的GUI程序,在GUI程序中均可以支持图像、视频和实时摄像头进行苹果叶部病害目标检测。
在这里插入图片描述

演示及项目介绍视频:

项目演示视频:

基于深度学习的苹果叶部病害目标检测项目演示视频

【计算机毕设,AI+农业】基于深度学习的苹果叶部病害图像目标检测系统【YOLO】【优化改进】【苹果叶部病害识别】

项目的详细做法,录制了详细的讲解视频合集࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值