欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
在当今日益复杂的社会环境中,公共安全和国防安全成为了社会发展的重要基石。特别是在大型活动、商场、军事基地等场所,对携带物品进行快速而准确的危险品筛查显得尤为重要。传统的安检方法,如人工检查、手持金属探测器等,虽然在一定程度上能够发挥作用,但存在效率低下、误判率高等问题。为了解决这个问题,我们利用深度学习技术,特别是目标检测算法YOLOv5,构建了一套安检仪危险品识别系统。
二、技术实现
系统架构:
本系统基于YOLOv5算法构建,利用深度学习技术进行危险品的快速而准确的检测。
主要组件包括:数据集准备、YOLOv5模型、训练过程和推理引擎。
数据集准备:
使用包含标记的危险品图像数据集进行模型训练,确保模型能够准确识别各种类型的危险物品。
YOLOv5模型:
YOLOv5采用了一种轻量级的骨干网络CSPDarknet53,结合PANet(Path Aggregation Network)特征融合方法,能够有效地提取图像中的特征信息。
YOLOv5的检测头能够对每个目标框进行类别预测和位置调整,以实现高精度的危险品检测。
训练过程:
利用数据集对YOLOv5模型进行微调,使其适应特定于安检仪危险品识别的任务。
在训练过程中,采用数据增强技术增加模型的泛化能力。
推理引擎:
部署已经训练好的模型,用于实时或离