欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
随着医疗信息化和智能化的快速发展,医院对患者信息的准确性和安全性要求越来越高。人脸识别技术作为一种高效、准确的生物识别技术,逐渐被应用于医院患者信息管理系统中。本项目旨在开发一个基于深度学习的医院患者人脸识别面部信息录入与识别系统,以提高患者信息管理的效率和安全性。
二、技术原理
本系统采用深度学习技术,特别是卷积神经网络(CNN)和深度学习模型(如FaceNet、SphereFace等),进行人脸特征提取和识别。深度学习模型通过大量的人脸图像数据进行训练,学习人脸的特征表示,从而实现对患者人脸的准确识别。
三、系统设计与实现
环境搭建:
安装Python编程环境,配置必要的深度学习框架(如TensorFlow、PyTorch等)。
安装OpenCV库,用于图像处理和人脸检测。
人脸检测:
使用OpenCV库中的Haar级联分类器或深度学习模型(如MTCNN)进行人脸检测,从输入图像中提取出人脸区域。
面部信息录入:
患者首次使用时,通过摄像头采集面部图像,并存储到数据库中。
对采集到的面部图像进行预处理,如灰度化、归一化等,以提高后续识别的准确性。
使用深度学习模型提取面部特征,并将特征向量与患者信息关联存储。
面部信息识别:
当患者再次使用时