蒙特卡洛树搜索(Monte Carlo Tree Search) - 原理与代码实例讲解
关键词:蒙特卡洛树搜索,博弈树,决策树,随机化搜索,强化学习,棋类游戏,人工智能,概率推理
1. 背景介绍
蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)是一种在人工智能领域中用于决策过程的算法。它广泛应用于棋类游戏、机器人、模拟仿真等领域,尤其是在需要从大量可能性中进行选择的复杂决策问题中表现出色。MCTS结合了决策树和随机化的特点,通过模拟来评估不同行动的效果,从而帮助决策者选择最佳行动。
1.1 问题的由来
随着计算机技术的发展,许多需要复杂决策的任务开始被计算机系统接管。在棋类游戏中,如围棋、国际象棋等,传统的启发式搜索方法已经达到了很高的水平,但仍然难以克服某些复杂的局面。MCTS作为一种新的搜索算法,通过模拟实验和概率推理,为解决这类问题提供了一种有效的方法。
1.2 研究现状
MCTS在近年来取得了显著的进展,不仅在棋类游戏中取得了突破,还在其他领域如机器人路径规划、强化学习等方面