特征工程 (Feature Engineering) 原理与代码实例讲解

特征工程 (Feature Engineering) 原理与代码实例讲解

关键词:特征工程, 数据预处理, 数据增强, 特征选择, 特征构建, 数据可视化

1. 背景介绍

在机器学习领域,数据是决定模型性能的关键因素之一。然而,原始数据往往带有噪声、缺失、异常值等问题,难以直接应用于模型训练。特征工程,即通过数据预处理、特征选择、特征构建等手段,提升数据质量,优化模型性能,是机器学习中不可或缺的一部分。本文将从原理与实践两个方面,详细讲解特征工程的核心概念、操作步骤及优化方法。

1.1 问题由来

特征工程的目的,是通过一系列数据处理技术,将原始数据转化为更适合模型训练的形式。在实际应用中,常见的数据问题包括:

  • 噪声:数据中可能存在错误、异常值,需要清洗或修正。
  • 缺失值:部分数据可能缺失,需要补齐或删除。
  • 异常值:部分数据异常,可能影响模型性能,需要进行处理。
  • 不平衡数据:部分类别数据较少ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值