AIGC 领域虚拟人物在广告传媒中的创新玩法
关键词:AIGC、虚拟人物、广告传媒、生成式AI、数字营销
摘要:本文以AIGC(人工智能生成内容)技术为核心,深入解析虚拟人物在广告传媒中的创新玩法。通过技术原理、实际案例和行业趋势的多维度分析,揭示虚拟人物如何突破传统广告的边界,实现“24小时不打烊的代言人”“千人千面的个性化互动”等创新场景。文章结合生活比喻、代码示例和实战案例,帮助读者理解AIGC虚拟人物的底层逻辑与商业价值。
背景介绍
目的和范围
传统广告传媒面临“成本高、互动弱、内容同质化”三大痛点:明星代言费用动则千万,且难以实现个性化;真人广告受限于时间和场景,无法24小时触达用户;内容创意依赖人工,难以快速响应市场变化。
本文聚焦AIGC技术驱动的虚拟人物,探索其在广告传媒中的6类创新玩法(如虚拟代言人、动态内容生成、跨次元互动等),覆盖技术原理、落地案例和未来趋势,为广告从业者、技术开发者提供可复用的参考框架。
预期读者
- 广告传媒行业从业者(创意总监、品牌经理):了解如何用虚拟人物提升广告效果;
- 技术开发者(AI工程师、前端开发):掌握AIGC虚拟人物的核心技术链路;
- 普通读者(对AIGC感兴趣的用户):通过通俗案例理解前沿技术的应用价值。
文档结构概述
本文从“技术-场景-案例”三层次展开:先解释AIGC虚拟人物的核心概念(如“数字分身”“生成式AI”),再拆解其与广告传媒的底层关系,接着通过代码示例展示技术实现,最后结合美妆、汽车、元宇宙等行业案例,总结创新玩法与未来趋势。
术语表
核心术语定义
- AIGC(AI-Generated Content):人工智能生成内容,即通过算法自动生成文本、图像、视频、3D模型等内容(类比“AI魔法工坊”)。
- 虚拟人物:基于AI技术生成的数字化角色,具备外貌、声音、性格等特征(类比“数字世界的演员”)。
- 数字分身:以真实人为原型生成的虚拟人物(如“虚拟版的你”)。
- 生成式AI:能“创造新内容”的AI模型(如ChatGPT写文案、Stable Diffusion画图)。
缩略词列表
- GAN(生成对抗网络):一种通过“对抗训练”生成内容的AI模型(后文详细解释)。
- LLM(大语言模型):如GPT-4,能理解和生成自然语言(负责虚拟人物的“说话能力”)。
核心概念与联系
故事引入:奶茶店的“24小时虚拟店长”
杭州某奶茶店曾遇到难题:周末客流量大,真人店员忙不过来;工作日晚上9点后门店冷清,无法触达“夜猫子”用户。后来,他们用AIGC技术做了个“虚拟店长小圆”——扎着马尾、会说方言的二次元形象,白天在门店屏幕上和顾客互动(“今天推荐杨枝甘露,第二杯半价哦~”),晚上在抖音直播教做奶茶,还能根据用户的购买记录推荐个性化饮品(“小明,你上周喝了3杯奶茶,今天试试低卡版?”)。半年后,门店夜间订单增长80%,用户复购率提升30%。
这个故事的关键,就是AIGC虚拟人物在广告传媒中的核心价值:打破时间、空间、个性化的限制。
核心概念解释(像给小学生讲故事一样)
核心概念一:AIGC——AI的“内容生产车间”
AIGC就像一个超级厉害的“内容生产车间”,里面有很多“AI工人”:有的擅长画图(如Stable Diffusion),有的擅长写文章(如ChatGPT),有的擅长做视频(如Runway ML)。以前,广告公司做一支视频需要找编剧、摄像、剪辑,现在AIGC能快速生成,甚至根据用户反馈“修改100版”。
核心概念二:虚拟人物——数字世界的“永动演员”
虚拟人物是数字世界的“永动演员”:不需要休息,24小时都能“上班”;不会“塌房”(负面新闻),形象永远正面;还能“分身”——同时在抖音、微信、线下门店出现。比如,某美妆品牌的虚拟代言人“小璃”,白天在小红书发化妆教程,晚上在淘宝直播带货,凌晨还能在海外社交平台发英文广告,比真人明星“高效10倍”。
核心概念三:广告传媒的“新需求”——从“单向灌输”到“双向互动”
传统广告像“广播喇叭”:品牌说,用户听。现在用户喜欢“交朋友”——希望广告能懂自己(比如“知道我是油皮,推荐控油粉底液”)、能互动(比如“问虚拟代言人‘这个色号适合黄皮吗?’,她能立刻回答”)、能参与(比如“用户给虚拟人物设计新衣服,被品牌采纳后送奖品”)。AIGC虚拟人物正好能满足这些需求。
核心概念之间的关系(用小学生能理解的比喻)
AIGC、虚拟人物、广告传媒的关系,就像“厨师、机器人服务员、餐厅”的合作:
- AIGC(厨师):负责“做食材”(生成虚拟人物的外貌、声音、台词);
- 虚拟人物(机器人服务员):负责“端菜”(把广告内容传递给用户);
- 广告传媒(餐厅):提供“场地”(抖音、微信、线下屏幕等渠道),让机器人服务员和用户“互动吃饭”(完成品牌传播)。
具体来说:
- AIGC与虚拟人物的关系:AIGC是“造人工具”,没有AIGC,虚拟人物只是一张静态图片;有了AIGC,虚拟人物能“说话”“做表情”“根据用户反馈变装”(就像厨师给机器人服务员“装程序”)。
- 虚拟人物与广告传媒的关系:虚拟人物是“广告的新载体”,传统广告用明星、图片、视频,现在用虚拟人物能实现更深度的互动(就像机器人服务员比传统服务员更懂用户需求)。
- AIGC与广告传媒的关系:AIGC是“广告的加速器”,能快速生成不同渠道的广告内容(比如给抖音生成15秒短视频,给朋友圈生成图文,给线下门店生成3D模型)(就像厨师能同时做中餐、西餐、日料)。
核心概念原理和架构的文本示意图
AIGC虚拟人物在广告中的技术架构可简化为“三层次”:
- 数据层:收集用户行为数据(如浏览记录、评论)、品牌素材(logo、产品图)、虚拟人物设定(外貌、性格);
- 模型层:用生成式AI(如GAN生成外貌、LLM生成台词)、语音合成(TTS)、动作捕捉(Mocap)训练虚拟人物;
- 应用层:在广告传媒渠道(短视频、直播、线下屏)实现互动(如问答、变装、个性化推荐)。
Mermaid 流程图
graph TD
A[用户需求/品牌目标] --> B[数据采集:用户行为+品牌素材]
B --> C[模型训练:生成式AI(外貌/台词)+语音合成+动作捕捉]
C --> D[虚拟人物:具备外貌/声音/性格/互动能力]
D --> E[广告渠道:短视频/直播/线下屏/元宇宙]
E --> F[用户互动:问答/变装/个性化推荐]
F --> G[数据反馈:优化虚拟人物与广告内容]
核心算法原理 & 具体操作步骤
AIGC虚拟人物的核心技术是多模态生成(同时生成文本、图像、语音、动作),关键算法包括:
1. 外貌生成:GAN(生成对抗网络)
GAN的原理像“画家和评论家的比赛”:
- 生成器(画家):尝试生成虚拟人物的图片(比如“大眼睛、长发的二次元形象”);
- 判别器(评论家):判断这张图是真实的还是生成的;
- 两者不断“对抗”,生成器越画越好,最终能生成以假乱真的虚拟人物。
Python代码示例(简化版):
# 用PyTorch实现一个简单的GAN(生成虚拟人物面部)
import torch
import torch.nn as nn
# 生成器:输入随机噪声,输出虚拟人物面部图像
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.Linear(100, 256), # 输入100维噪声
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, 1024), # 输出1024维图像特征(简化示例)
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 判别器:输入图像特征,输出“真实”概率(0-1)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Linear(1024, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 1), # 输出1维概率
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
# 训练过程(简化):生成器和判别器交替训练
# 实际中需要大量真实人脸数据(如CelebA数据集)
2. 台词生成:大语言模型(LLM)
虚拟人物的“说话能力”依赖LLM(如GPT-4),它能根据用户提问生成符合人物性格的回答。例如,一个“温柔治愈系”虚拟代言人,用户问“最近皮肤干燥怎么办?”,LLM会生成:“秋冬干燥要注意补水哦~我们的精华水含有玻尿酸,睡前涂一层,第二天皮肤会软软的~”
关键步骤:
- 微调模型:用品牌语料(如产品介绍、用户常见问题)训练LLM,让它“学会”品牌话术;
- 性格注入:通过prompt(提示词)设定虚拟人物性格(如“温柔、活泼、专业”),例如:“你是XX品牌的虚拟代言人小璃,性格温柔,喜欢用emoji,回答用户问题时要结合产品成分。”
3. 语音与动作生成:扩散模型 + 动作捕捉
- 语音生成:用扩散模型(如Stable Audio)将文本转语音,模仿真人声线(甚至可以“克隆”明星声音);
- 动作生成:通过动作捕捉技术(Mocap)记录真人动作,或用AI生成自然的虚拟动作(如“歪头笑”“挥手”)。
数学模型和公式 & 详细讲解 & 举例说明
GAN的损失函数(核心数学模型)
GAN的训练目标是最小化生成器(G)和判别器(D)的对抗损失,数学公式为:
min
G
max
D
V
(
D
,
G
)
=
E
x
∼
p
d
a
t
a
(
x
)
[
log
D
(
x
)
]
+
E
z
∼
p
z
(
z
)
[
log
(
1
−
D
(
G
(
z
)
)
)
]
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log (1 - D(G(z)))]
GminDmaxV(D,G)=Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]
- x x x:真实数据(如真实人脸图片);
- z z z:随机噪声(生成器的输入);
- D ( x ) D(x) D(x):判别器判断真实数据为“真实”的概率;
- D ( G ( z ) ) D(G(z)) D(G(z)):判别器判断生成数据为“真实”的概率。
通俗解释:判别器希望“真实数据得1分,生成数据得0分”(最大化 log D ( x ) + log ( 1 − D ( G ( z ) ) ) \log D(x) + \log(1-D(G(z))) logD(x)+log(1−D(G(z))));生成器希望“生成数据让判别器打高分”(最小化 log ( 1 − D ( G ( z ) ) ) \log(1-D(G(z))) log(1−D(G(z))))。两者不断博弈,最终生成器能生成以假乱真的虚拟人物。
LLM的注意力机制(理解“说话逻辑”的关键)
LLM(如GPT)的核心是自注意力机制(Self-Attention),它让模型在生成句子时“关注”上下文的关键信息。例如,用户问“这个口红适合黄皮吗?”,模型需要“关注”“口红”“黄皮”这两个关键词,生成相关回答。
注意力分数的计算(简化版):
Attention
(
Q
,
K
,
V
)
=
softmax
(
Q
K
T
d
k
)
V
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{QK^T}{\sqrt{d_k}} \right) V
Attention(Q,K,V)=softmax(dkQKT)V
- Q Q Q(查询)、 K K K(键)、 V V V(值):通过线性变换从输入文本中提取的特征;
- d k \sqrt{d_k} dk:缩放因子,防止梯度消失;
- softmax \text{softmax} softmax:将分数转化为概率,确定每个词的“重要程度”。
举例:输入句子“黄皮 适合 口红”,Q、K、V会计算“黄皮”与“口红”的关联度,模型因此知道回答要围绕“黄皮适合的口红色号”。
项目实战:代码实际案例和详细解释说明
以“某美妆品牌虚拟代言人开发”为例,演示从0到1的实现流程。
开发环境搭建
- 硬件:GPU(NVIDIA A100,加速模型训练);
- 软件:Python 3.9、PyTorch 2.0、Hugging Face Transformers(LLM)、Stable Diffusion(图像生成)、Coqui TTS(语音合成);
- 数据:品牌素材(产品图、logo)、用户FAQ(常见问题)、虚拟人物设定(外貌:粉色长发;性格:活泼可爱)。
源代码详细实现和代码解读
步骤1:生成虚拟人物外貌(用Stable Diffusion)
from diffusers import StableDiffusionPipeline
import torch
# 加载Stable Diffusion模型(需申请Hugging Face Token)
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda") # 使用GPU加速
# 生成虚拟人物的提示词(控制外貌)
prompt = "a cute girl with pink long hair, big eyes, anime style, 4k"
image = pipe(prompt).images[0]
image.save("virtual_character.png") # 保存生成的图片
代码解读:通过Stable Diffusion的“提示词工程”(prompt engineering)控制虚拟人物的外貌(粉色长发、大眼睛、二次元风格),生成符合品牌调性的形象。
步骤2:训练虚拟人物的“说话能力”(用LLaMA微调)
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import pandas as pd
# 加载LLaMA模型和分词器
tokenizer = AutoTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = AutoModelForCausalLM.from_pretrained("decapoda-research/llama-7b-hf")
# 准备品牌语料(用户问题-回答对)
data = pd.read_csv("brand_faq.csv") # 格式:{"question": "适合黄皮吗?", "answer": "我们的#03色号是暖调豆沙色,超显白哦~"}
tokenized_data = tokenizer(list(data["question"] + " " + data["answer"]), truncation=True, max_length=512)
# 训练参数设置
training_args = TrainingArguments(
output_dir="./llama_finetuned",
per_device_train_batch_size=4,
num_train_epochs=3,
learning_rate=2e-5,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_data,
)
# 开始微调(让模型学会品牌话术)
trainer.train()
代码解读:通过微调LLaMA模型,让虚拟人物“学会”回答用户关于产品的问题(如“适合黄皮吗?”),输出符合品牌调性的回答(活泼可爱风格)。
步骤3:语音合成(用Coqui TTS)
from TTS.api import TTS
# 加载中文语音模型(需下载预训练模型)
tts = TTS(model_name="tts_models/zh-CN/bakerbot/tacotron2-DDC-GST", progress_bar=True, gpu=True)
# 生成虚拟人物的语音(输入LLM生成的台词)
text = "我们的#03色号是暖调豆沙色,超显白哦~"
tts.tts_to_file(text=text, file_path="response.wav", speaker_wav="reference_voice.wav") # 用参考声音(如真人录音)克隆音色
代码解读:通过语音合成模型(TTS)将LLM生成的文本转化为语音,支持“声音克隆”(用真人录音作为参考,让虚拟人物声音更真实)。
代码解读与分析
以上代码实现了虚拟人物的“外貌生成-台词生成-语音合成”全链路。实际项目中还需集成动作生成(如用3D建模软件Blender生成虚拟人物动作)、多渠道部署(如抖音直播用OBS推流虚拟人物画面)。
实际应用场景
AIGC虚拟人物在广告传媒中的创新玩法可分为6大类:
1. 虚拟代言人:“永不塌房”的品牌挚友
- 案例:屈臣氏虚拟代言人“屈晨曦Wilson”,融合AI生成外貌(混血帅哥)、LLM对话能力(能聊美妆知识),在抖音直播中与用户互动“油皮怎么选精华?”,单场直播GMV(商品交易总额)超500万。
- 优势:形象可控(无负面新闻)、成本低于明星(一次性开发费+长期复用)、可定制(根据品牌调性调整性格)。
2. 动态内容生成:“一键生成千条广告”
- 案例:宝马用AIGC虚拟人物生成“千人千面”广告——根据用户所在地(如北京/上海)、兴趣(如越野/城市通勤),自动生成虚拟代言人推荐不同车型的视频(“北京的王女士,X5适合您周末去草原!”)。
- 技术:通过用户画像数据(来自CRM系统)驱动LLM生成个性化台词,Stable Diffusion生成匹配的场景图(如草原/城市)。
3. 跨次元互动:“进入用户的朋友圈”
- 案例:元气森林虚拟人物“气气”在微信上线“朋友圈互动”功能——用户发“今天加班好困”,气气会评论“试试气泡水,0糖0卡超提神~”;用户给气气的朋友圈点赞,气气会私信“谢谢宝~送你一张5元券!”。
- 价值:从“广告灌输”变为“朋友聊天”,用户互动率提升200%。
4. 元宇宙直播:“3D虚拟空间卖货”
- 案例:耐克在Decentraland(元宇宙平台)搭建虚拟鞋店,用户以虚拟形象进入,与耐克虚拟代言人“Niki”互动(“这双鞋适合跑步吗?”“试穿给我看看”),Niki能实时展示3D鞋模、播放科技讲解视频,用户可直接下单购买。
- 技术:3D建模(虚拟场景)+ 实时动作捕捉(虚拟人物动作)+ 多模态对话(文本+语音+3D展示)。
5. 虚拟KOL:“垂类领域的知识专家”
- 案例:丁香医生推出虚拟健康顾问“小丁”,基于医学大模型(如ChatDoctor),能解答“感冒吃什么药?”“高血压饮食注意事项”等问题,同时推荐丁香健康的产品(如维生素补剂)。
- 优势:专业度高于普通KOL(基于医学知识库)、可24小时在线(解决用户深夜咨询需求)。
6. 数字分身:“用户自己的虚拟形象”
- 案例:完美日记推出“虚拟试妆”功能——用户上传照片,AIGC生成“数字分身”,可实时试涂口红、眼影,生成“试妆视频”分享到朋友圈(视频中虚拟分身会说“这个色号超适合我~”)。
- 转化:用户生成试妆视频后,购买对应产品的概率提升40%(数据来自完美日记内部报告)。
工具和资源推荐
1. 虚拟人物生成工具
- D-ID:一键生成会说话的虚拟人物(上传照片+输入文本,生成视频);
- Synthesia:支持多语言、多风格虚拟人物(新闻主播、二次元、3D);
- Character.AI:专注对话互动的虚拟人物平台(可自定义性格、对话历史)。
2. AIGC开发框架
- Hugging Face Transformers:集成LLM(如GPT-4、LLaMA)的开发库;
- Stable Diffusion:开源图像生成模型(支持自定义微调);
- Coqui TTS:开源语音合成工具(支持声音克隆)。
3. 行业报告
- 《2023中国虚拟人产业发展报告》(艾媒咨询):分析市场规模与趋势;
- 《AIGC在广告传媒中的应用白皮书》(阿里妈妈):提供品牌实战案例。
未来发展趋势与挑战
趋势1:多模态交互“更自然”
未来虚拟人物将融合“视觉+听觉+触觉”(如元宇宙中用户触摸虚拟人物,她会说“有点痒~”),通过多模态大模型(如GPT-4V)实现更拟人化的互动。
趋势2:“虚拟人+AIGC”的“内容工厂”
品牌将拥有“虚拟人矩阵”——每个产品线对应一个虚拟代言人(如美妆线“小璃”、护肤线“小润”),AIGC自动生成它们的日常内容(小红书笔记、抖音短平快、直播脚本),实现“千号千面”。
趋势3:虚拟人物“参与创作”
用户可与虚拟人物“共创广告”——比如用户给虚拟代言人设计新衣服,AIGC生成穿新衣服的广告视频,被品牌采纳后用户获得奖励(如限量产品)。
挑战1:伦理与法律问题
- 隐私风险:用用户照片生成数字分身需明确授权;
- 版权争议:虚拟人物模仿真人外貌/声音可能涉及侵权(如“虚拟刘德华”被法院认定需获本人授权);
- 虚假信息:虚拟人物发布不实广告(如“某面膜7天美白”)需承担法律责任。
挑战2:技术成本与效果平衡
- 开发成本:高精度3D虚拟人物开发费用可能达百万级;
- 效果验证:虚拟人物广告的ROI(投资回报率)需通过A/B测试(对比真人广告)验证。
总结:学到了什么?
核心概念回顾
- AIGC:AI生成内容的“魔法工坊”,能快速生成虚拟人物的外貌、台词、语音;
- 虚拟人物:数字世界的“永动演员”,打破时间、空间、个性化限制;
- 广告传媒新需求:从“单向灌输”到“双向互动”,用户需要“懂自己”的广告。
概念关系回顾
AIGC是“造人工具”,虚拟人物是“广告演员”,广告传媒是“舞台”:
- AIGC让虚拟人物“能看、能说、能互动”;
- 虚拟人物让广告“更高效、更个性化、更有趣”;
- 广告传媒的需求推动AIGC技术向“多模态、实时性、低成本”发展。
思考题:动动小脑筋
- 如果你是某奶茶品牌的营销经理,如何用AIGC虚拟人物设计一个“冬季热饮”广告?(提示:考虑互动场景、个性化推荐、跨渠道投放)
- 虚拟人物可能带来“虚假宣传”风险,作为品牌方,你会如何避免?(提示:内容审核机制、法律条款设计)
- 未来虚拟人物可能“进入”元宇宙,用户以虚拟形象与它互动,你认为这会带来哪些新的广告玩法?(提示:虚拟试穿、联合活动、用户共创)
附录:常见问题与解答
Q:虚拟人物和真人明星代言相比,成本更低吗?
A:短期看,高精度3D虚拟人物开发成本可能接近明星代言(约百万级),但长期复用成本低(无需支付每年代言费),且可24小时工作,综合ROI更高。
Q:虚拟人物的“性格”如何设定?可以调整吗?
A:通过LLM的prompt(提示词)和训练语料设定(如“温柔”用“~”“呀”等语气词,“专业”用“成分:玻尿酸”等术语)。后期可通过重新训练模型调整性格(如从“活泼”转为“知性”)。
Q:用户能分辨出虚拟人物和真人吗?
A:当前技术下,高精度虚拟人物(如“苏晓冰”“柳夜熙”)的外貌、动作、语音已接近真人,但对话逻辑仍有“机械感”(如回答复杂问题时不够自然)。未来随着多模态大模型发展,分辨难度会增加。
扩展阅读 & 参考资料
- 《AIGC:智能内容生成时代》(作者:张鹏)——系统讲解AIGC技术与应用;
- 《虚拟人:元宇宙的数字新物种》(作者:腾讯研究院)——分析虚拟人产业趋势;
- 论文《GANs in Virtual Character Generation》(IEEE)——技术细节深度解析;
- 案例来源:屈臣氏、宝马、元气森林官方公众号。