传热系数的计算———典型场景推导与应用

由于研究内容需要,最近学习了传热学的一些基础碎片知识,希望以后可以通过博客的形式,记录自己学习到的知识内容。能够帮助到初学者们,就更好了,有任何错误,请指出。

1 引言篇:理论基础铺垫

        引言部分的内容主要服务于正文的计算过程,本文将循序渐进的展开计算过程,避免大家在学习的过程中遇到我曾遇到过的困扰。

首先在研究各坐标系下的导热微分方程前,了解一下必需用到的知识:

1)能量守恒:净热量(6个面的导热+内热源)=m·cdt

        m,质量,kg;c,热容。

2)傅里叶导热定律:q=-\lambda \triangledown T           \Phi_{x}=q \cdot A_{x}

        q,热流密度,W/{m^{2}}\lambda,导热系数,W/(m\cdot K)\triangledown T,温度梯度;\Phi_{x},坐标为x的平面热流量;A_{x},热流流过x面的面积。

3)f(x+dx)=f(x)+\frac{\partial f(x)}{\partial x}dx

1.1 笛卡尔坐标系下的导热微分方程

假设:单位体积微元、在单位时间内的净热流量为\Phi

step1:求x=x、x=x+dx处的热流量,即沿x方向的传导热流量

\Phi (x)=q \cdot A=-\lambda \cdot \frac{\partial t}{\partial x} \cdot dy \cdot dz

\Phi(x+dx)= \Phi(x) +\frac{\partial \Phi(x)}{\partial x}dx这里应用了知识3)

沿着x方向的净流量Netx即

Net_{x}=\Phi(x)- \Phi(x+dx)

           =-\frac{\partial \Phi(x)}{\partial x}dx=-\frac{\partial }{\partial x}(- \lambda \cdot \frac{\partial t}{\partial x})dxdydz

           =\frac{\partial }{\partial x}(\lambda \cdot \frac{\partial t}{\partial x})\cdot dV

同理,沿y、z方向的传导热流量分别为:

Net_{y}=\frac{\partial }{\partial y}(\lambda \cdot \frac{\partial t}{\partial y})\cdot dV       

Net_{z}=\frac{\partial }{\partial z}(\lambda \cdot \frac{\partial t}{\partial z})\cdot dV

step2:能量守恒定律:净热量(6个面的导热+内热源)=m·Cdt

(Net_{x}+Net_{y}+Net_{z}+\dot{\Phi}) \cdot V=\rho VC\frac{\partial t}{\partial \tau} 

由于之前的假设,等式左侧(Net_{x}+Net_{y}+Net_{z}+\dot{\Phi})是单位体积、单位时间的结果,所以能量守恒的式子应乘上总体积;

等式右侧,由dt变为\frac{\partial t}{\partial \tau},是为了匹配等式左侧的单位时间内的条件。

整理后得到笛卡尔坐标系下的典型导热微分方程:

结论一:\rho C \frac{\partial t}{\partial \tau}=[\frac{\partial }{\partial x}(\lambda\frac{\partial t}{\partial x})+\frac{\partial }{\partial y}(\lambda\frac{\partial t}{\partial y})+\frac{\partial }{\partial z}(\lambda\frac{\partial t}{\partial z})]+\dot{\Phi}

\rho C \frac{\partial t}{\partial \tau},非稳态项内能增量;\dot{\Phi},内热源项;

[\frac{\partial }{\partial x}(\lambda\frac{\partial t}{\partial x})+\frac{\partial }{\partial y}(\lambda\frac{\partial t}{\partial y})+\frac{\partial }{\partial z}(\lambda\frac{\partial t}{\partial z})],三个坐标方向净导入的热量。

根据结论一,可根据不同情景建立笛卡尔坐标系下的传热微分方程:

【例1】常物性(\lambda是常数)、无内热源

\rho c \frac{\partial t}{\partial \tau}=\lambda(\frac{\partial^2 t}{\partial x^2}+\frac{\partial^2 t}{\partial y^2}+\frac{\partial^2 t}{\partial z^2})

【例2】常物性、无内热源、稳态

0=\frac{\partial^2 t}{\partial x^2}+\frac{\partial^2 t}{\partial y^2}+\frac{\partial^2 t}{\partial z^2}


1.2 柱坐标下的导热微分方程

在计算柱坐标下的导热微分方程时,应注意面积微元表达形式的变化,首先计算面积微元表达式

壁面A1:rd\theta dz、底面A2:rd\theta dr、侧面A3:drdz;微元体积表达式:V=rd\theta drdz

【注】在微元块中,drd\theta是极小的,可视作:内环边=外环边;因此,底面被视作为:长为rd\theta,宽为dr的长方形微元,壁面亦是如此。

step1:沿径向(r方向)的传导热流量(r=r、r=r+dr处的热流量)

r=r:        \Phi(r)=qA_{1}=-\lambda\frac{\partial t}{\partial r} \cdot rd\theta dz

r=r+dr:   \Phi(r+dr)=\Phi(r)+\frac{\partial \Phi(r)}{\partial r}dr

Net_{r}=\Phi(r)-\Phi (r+dr)=-\frac{\partial \Phi(r)}{\partial r}dr=-\frac{\partial }{\partial r}(-\lambda \frac{\partial t}{\partial r} \cdot rd\theta dz)dr    这一步只是将\Phi(r)展开,而括号中与r无关的项可以提出去,为了凑dV的表达式,在前面提出一项1/r,之后变成:

=\frac{1}{r}\frac{\partial }{\partial r}(\lambda r\frac{\partial t}{\partial r})drd\theta dz \cdot r=\frac{1}{r}\frac{\partial }{\partial r}(\lambda r\frac{\partial t}{\partial r})dV 

step2:沿\theta方向的传导热流量(\theta=\theta\theta=\theta + d\theta处的热流量)

\theta=\theta\Phi(\theta)=-\lambda\frac{\partial t}{\partial \theta r} \cdot drdz 这里需要注意是温度对\theta r的偏导,因为\theta是角度变量,不代表方向,而\theta变化的方向由\theta r表示,即(角度·半径)

\theta=\theta + d\theta\Phi(\theta+d\theta)=\Phi(\theta)+\frac{\partial \Phi(\theta))}{\partial \theta} d\theta

Net_{\theta}=-\frac{\partial \Phi(\theta)}{\partial \theta}d\theta=-\frac{\partial }{\partial \theta}(-\lambda \frac{\partial t}{\partial \theta r}drdz)d\theta这里注意将括号内与\theta无关的变量提出后,并为了凑dV得到:

           =\frac{1}{r} \cdot \frac{1}{r}\frac{\partial }{\partial \theta}(\lambda\frac{\partial t}{\partial \theta})rd\theta drdz=\frac{1}{r^{2}}\frac{\partial }{\partial \theta}(\lambda\frac{\partial t}{\partial \theta})dV

step3:沿z方向的传导热流量(z=zz=z+dz处的热流量)

z=z :\Phi (z)=-\lambda\frac{\partial t}{\partial z}rd\theta dr

z=z+dz\Phi(z+dz)=\Phi(z)+\frac{\partial \Phi(z)}{\partial z}dz

Net_{z}=-\frac{\partial \Phi(z)}{\partial z}dz=-\frac{\partial }{\partial z}(-\lambda\frac{\partial t}{\partial z} rd\theta dr)dz=\frac{\partial }{\partial z}(\lambda \frac{\partial t}{\partial z})dV

step4:能量守恒定律

(Net_{r}+Net_{\theta}+Net_{z}+\dot{\Phi}) \cdot V=\rho Vc\frac{\partial t}{\partial \tau}

整理后得到柱坐标系下的典型导热微分方程:

结论二:\rho C\frac{\partial t}{\partial \tau}=\frac{\partial }{r \partial r}(\lambda r\frac{\partial t}{\partial r})+\frac{\partial}{r^{2} \partial \theta}(\lambda \frac{\partial t}{\partial \theta})+\frac{\partial }{\partial z}(\lambda \frac{\partial t}{\partial z})+\dot \Phi


1.3 圆筒壁面一维传热模型(径向)热阻及热流量公式

假设:一维导热、稳态、无内热源、常物性、第一类边界条件

根据结论二与假设条件,列出微分方程:

\frac{\partial }{\partial r}(r \frac{\partial t}{\partial r})=0

经过两次积分,通过该方程可解得温度t分布:t=C_{1}lnr+C_{2}

其中:C_{1}=\frac{t_{1}-t_{2}}{ln(r_{1}/r_{2})}        C_{2}=t_{1}-\frac{t_{1}-t_{2}}{ln(r_{1}/r_{2})}ln r_{1}

代入得:t=t_{1}+\frac{t_{1}-t_{2}}{ln(r_{1}/r_{2})}ln (\frac{r}{r_{1}})

通过对t分布函数求导,得到温度梯度\triangledown T

于是圆筒壁面一维传热热流量 :\Phi=-\lambda A \triangledown T = -\lambda 2\pi rl(-\frac{t_{1}-t_{2}}{ln(r_{2}/r_{1})} \frac{1}{r})=\frac{t_{1}-t_{2}}{\frac{ln(r_{2}/r_{1})}{2 \pi \lambda l}}

根据热阻得定义,该模型得热阻为其分母,即R=\frac{ln(r_{2}/r_{1})}{2 \pi \lambda l}

2 正文篇:传热系数的计算

2.1 光滑壁面的总传热系数计算

\left\{\begin{matrix} \Phi=A h_{1}(t_{f1}-t_{w1})\\ \Phi=A \lambda \frac{t_{w1}-t_{w2}}{\delta }\\ \Phi=Ah_{2}(t_{w2}-t_{f2}) \end{matrix}\right.

经整理后,消去t_{w1}t_{w2}得:

\Phi=\frac{t_{f1}-t_{f2}}{\frac{1}{A}(\frac{1}{h_{1}}+\frac{\delta}{\lambda}+\frac{1}{h_{2}})}     左式对比牛顿冷却公式\Phi=kA(t_{f1}-t_{f2})

得到该模型的传热系数:k=\frac{1}{(\frac{1}{h_{1}}+\frac{\delta}{\lambda}+\frac{1}{h_{2}})}

2.2 圆筒壁面的总传热系数计算

\left\{\begin{matrix} \Phi = h_{i} \pi d_{i} l({t_{f1}-t_{wi}})\\ \Phi = \frac{t_{wi}-t_{wo}}{\frac{ln(d_{o}/d_{i})}{2 \pi \lambda l}}\\ \Phi = h_{o} \pi d_{o} l({t_{wo}-t_{f2}}) \end{matrix}\right.

该方程组中式2,根据1.3中的结论列出,式1、3均是牛顿冷却公式

经整理后,消去t_{wi}t_{wo}得:

\Phi = \frac{\pi l (t_{fi}-t_{fo})}{\frac{1}{h_{i}d_{i}}+\frac{ln(d_{o}/d_{i})}{2\lambda}+\frac{1}{h_{o}d_{o}}}左式对比牛顿冷却公式\Phi=kA(t_{f1}-t_{f2})

【注】在圆筒壁面的传热系数计算时,上述两式在比较时,应首先确定是以内/外壁面面积为基准

因为:A_{i}=\pi d_{i} l         A_{o}=\pi d_{o} l

通过比较该模型的传热系数有两种表达形式:

1、以内壁面积为基准:k_{o}=\frac{1}{\frac{1}{h_{i}} \frac{d_{o}}{d_{i}}+\frac{d_{o}ln(d_{o}/d_{i})}{2 \lambda}+\frac{1}{h_{o}}}

2、以外壁面积为基准:k_{i}=\frac{1}{\frac{1}{h_{i}}+\frac{d_{i}ln(d_{o}/d_{i})}{2\lambda}+\frac{1}{h_{o}} \frac{d_{i}}{d_{o}}}

3 总结

3.1 笛卡尔坐标系下的传热微分方程:\rho C \frac{\partial t}{\partial \tau}=[\frac{\partial }{\partial x}(\lambda\frac{\partial t}{\partial x})+\frac{\partial }{\partial y}(\lambda\frac{\partial t}{\partial y})+\frac{\partial }{\partial z}(\lambda\frac{\partial t}{\partial z})]+\dot{\Phi}

3.2 柱坐标系下的传热微分方程:\rho C\frac{\partial t}{\partial \tau}=\frac{\partial }{r \partial r}(\lambda r\frac{\partial t}{\partial r})+\frac{\partial}{r^{2} \partial \theta}(\lambda \frac{\partial t}{\partial \theta})+\frac{\partial }{\partial z}(\lambda \frac{\partial t}{\partial z})+\dot \Phi

 3.3 光滑壁面的总传热系数:k=\frac{1}{(\frac{1}{h_{1}}+\frac{\delta}{\lambda}+\frac{1}{h_{2}})}

 3.4 圆筒壁面的总传热系数:k_{o}=\frac{1}{\frac{1}{h_{i}} \frac{d_{o}}{d_{i}}+\frac{d_{o}ln(d_{o}/d_{i})}{2 \lambda}+\frac{1}{h_{o}}}   或 k_{i}=\frac{1}{\frac{1}{h_{i}}+\frac{d_{i}ln(d_{o}/d_{i})}{2\lambda}+\frac{1}{h_{o}} \frac{d_{i}}{d_{o}}}

关于热阻的计算,详细过程不在此赘述,类比电路模型很容易可以得到结果。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值