序
由于研究内容需要,最近学习了传热学的一些基础碎片知识,希望以后可以通过博客的形式,记录自己学习到的知识内容。能够帮助到初学者们,就更好了,有任何错误,请指出。
1 引言篇:理论基础铺垫
引言部分的内容主要服务于正文的计算过程,本文将循序渐进的展开计算过程,避免大家在学习的过程中遇到我曾遇到过的困扰。
首先在研究各坐标系下的导热微分方程前,了解一下必需用到的知识:
1)能量守恒:净热量(6个面的导热+内热源)=
m,质量,kg;c,热容。
2)傅里叶导热定律:
q,热流密度,;
,导热系数,
;
,温度梯度;
,坐标为x的平面热流量;
,热流流过x面的面积。
3)
1.1 笛卡尔坐标系下的导热微分方程
假设:单位体积微元、在单位时间内的净热流量为
step1:求x=x、x=x+dx处的热流量,即沿x方向的传导热流量
这里应用了知识3)
沿着x方向的净流量Netx即
同理,沿y、z方向的传导热流量分别为:
step2:能量守恒定律:净热量(6个面的导热+内热源)=
由于之前的假设,等式左侧是单位体积、单位时间的结果,所以能量守恒的式子应乘上总体积;
等式右侧,由dt变为,是为了匹配等式左侧的单位时间内的条件。
整理后得到笛卡尔坐标系下的典型导热微分方程:
结论一:
,非稳态项内能增量;
,内热源项;
,三个坐标方向净导入的热量。
根据结论一,可根据不同情景建立笛卡尔坐标系下的传热微分方程:
【例1】常物性(是常数)、无内热源
【例2】常物性、无内热源、稳态
1.2 柱坐标下的导热微分方程
在计算柱坐标下的导热微分方程时,应注意面积微元表达形式的变化,首先计算面积微元表达式
壁面A1:、底面A2:
、侧面A3:
;微元体积表达式:
【注】在微元块中,、
是极小的,可视作:内环边=外环边;因此,底面被视作为:长为
,宽为
的长方形微元,壁面亦是如此。
step1:沿径向(r方向)的传导热流量(r=r、r=r+dr处的热流量)
r=r:
r=r+dr:
这一步只是将
展开,而括号中与r无关的项可以提出去,为了凑dV的表达式,在前面提出一项1/r,之后变成:
step2:沿
方向的传导热流量(
、
处的热流量)
:
这里需要注意是温度对
的偏导,因为
是角度变量,不代表方向,而
变化的方向由
表示,即(角度·半径)
:
这里注意将括号内与
无关的变量提出后,并为了凑dV得到:
step3:沿z方向的传导热流量(
、
处的热流量)
:
:
step4:能量守恒定律
整理后得到柱坐标系下的典型导热微分方程:
结论二:
1.3 圆筒壁面一维传热模型(径向)热阻及热流量公式
假设:一维导热、稳态、无内热源、常物性、第一类边界条件
根据结论二与假设条件,列出微分方程:
经过两次积分,通过该方程可解得温度t分布:
其中:
代入得:
通过对t分布函数求导,得到温度梯度
于是圆筒壁面一维传热热流量 :
根据热阻得定义,该模型得热阻为其分母,即
2 正文篇:传热系数的计算
2.1 光滑壁面的总传热系数计算
经整理后,消去、
得:
左式对比牛顿冷却公式
得到该模型的传热系数:
2.2 圆筒壁面的总传热系数计算
该方程组中式2,根据1.3中的结论列出,式1、3均是牛顿冷却公式
经整理后,消去、
得:
左式对比牛顿冷却公式
【注】在圆筒壁面的传热系数计算时,上述两式在比较时,应首先确定是以内/外壁面面积为基准
因为:
通过比较该模型的传热系数有两种表达形式:
1、以内壁面积为基准:
2、以外壁面积为基准:
3 总结
3.1 笛卡尔坐标系下的传热微分方程:
3.2 柱坐标系下的传热微分方程:
3.3 光滑壁面的总传热系数:
3.4 圆筒壁面的总传热系数:
或
关于热阻的计算,详细过程不在此赘述,类比电路模型很容易可以得到结果。