《数据恢复与图对比去噪的联合学习的不完整多视图聚类》

本人认为这篇文章最大的创新就是这个图对比降噪,降噪也是数据处理方面值得考虑和继续创新的一个点。 

摘要:

我们提出了一种新的不完全多视图聚类统一图对比学习框架(UGCF),它联合学习数据恢复、图对比去噪和聚类。具体来说,UGCF首先通过利用每个视图中的保守关系恢复丢失的值,并保留数据中的局部结构。其次,UGCF通过学习每个视图对象的关联结构来消除多视图数据的异构性,并通过操纵关联图的拓扑结构来构建多视图数据的统一图为了提高顶点特征的质量,通过选择正、负样本对统一的图进行图对比学习,大大提高了特征的判别性,从而消除了数据中的噪声。最后,UGCF将数据恢复、图对比去噪和聚类集成到一个总体目标中。

符号: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值