自监督图补全的不完整多视图聚类

要么对原始不完整多视图数据进行恢复,这里把问题转化为了图填充,也就是对不完整视图的相似图补全问题。本人认为主要思想是提取视图的特征,利用学习相似图,是不完整的,然后就是补全得到。聚类结果由V上进行K-means得出。 

摘要:

从一个新的角度开发了一种新的方法来促进IMVC。具体而言,我们将缺失实例问题转化为不完整视图的相似图补全问题,并提出了一种自监督多视图图补全算法来推断相关的缺失条目。此外,通过结合约束特征学习,推断图可以自然地用于表示学习。我们从理论上证明了我们的特征学习过程通过编码学习到的相似图来执行自回归过滤函数,这可以为聚类任务产生判别表示。

主要思想:

不是在实例级解决缺失数据问题,而是利用图来表示样本的相似性,我们将这个问题重新表述为缺失相似值问题。因此,我们提出了一种自监督图推理方法来解决不完整视图中缺少相似值的问题。我们的方法背后的思想是,不同视图的图反映了实例之间的内在结构,可以作为推断不完整图的有用补充,同时利用所有视图的一致性信息。引入了低秩约束和交叉视图自监督正则化来正则化图补全,它们分别用于揭示视图特定结构和全局一致性结构。这样,就可以通过提出的正则化图补全过程有效地推断出相关的缺失项。

Model

问题定义:

假设我们有一个多视图数据矩阵X = {X1,X2,…,Xn} (n个实例)每个样本Xi =[Xi^1,Xi^2,…],Xi^m]从m个视图中收集,其中Xi^k∈1×dk表示第k个视图中的i-th样本, dk表示第k个视图的特征维数。对于IMVC问题,实例Xi的某些视图在某些视图中可能不可用(如果第i个样本在第k个视图中不可用,我们将Xi^k的元素设置为0或NaN)。在这里,我们定义一个有序索引集ωk (nk≤n为第k个视图中完成实例的个数)来表示是否对每个视图的实例进行采样。例如ωk =[1,4,5,…n]表示在第k个视图中采样第1、第4、第5个实例。

自监督多视图补全:

首先基于特征表示学习每个视图的特定视图,并旨在同时进行图学习和特征学习。对于每个视图(k = 1,2,…,m),相关公式定义如下,其中Uk是Xk的特征表示。可以从观察到的样本(在集合ωk中)得到特定视图的相似图Qk。Qk是不完整的,因为它没有从缺失的样本中估计出相似度权重,在这个设置中缺失了相应的相似度权重。

因此,该方法的关键挑战是如何基于不完全图Qk推断缺失信息。为了克服这一挑战,我们开发了一个自监督图补全框架来推断每个视图(k = 1,2,…,m)的缺失信息。其中,Ak∈Rn×n为每个视图的完成图。

tr(V^TA^kV)能够利用所有视图的一致性自监督信息,其中V是更新后的统一相似矩阵L的top-K (K为聚类数)最小特征向量,定义为

其中Dk是对角矩阵。在这里,V是公共图L的最小切,表示图切指示矩阵。理想V是簇标的单热矩阵。它本质上反映了实例之间的内在集群结构。因此,tr(V^TA^kV)可以进一步被认为是跨所有视图的图补全的自监督约束。与朴素矩阵补全方法不同,所提出的图补全能够同时利用所有视图中特定于视图的低秩结构和一致性自监督信息。

基于低通图滤波器的特征学习

上面都是基于特征U^k去得到相似图Q^k,而当获得相似图Q^k时,特征表示U^k可估计为

对上式求导,令其为零,可得其闭型解为

从图滤波的角度来看,上式的相关图滤波器是一个自回归滤波器(滤波器这块本人不了解,暂时也说不明白)

par(λi)是低通的,并且在Xk上应用该AutoRegressive滤波器能够产生平滑的特征表示Uk,其中同一簇的样本具有相似的值,并且比其他簇的值更大。受此启发,可以将自回归滤波器((5))替换并推广为多视图低通图卷积滤波器。为此,我们通过对推断出的公共图L进行编码,进一步定义一个通用图过滤函数G(·):

最终的目标函数:

总结:

开发了一种用于不完全多视图聚类的自监督图补全方法。与大多数现有的在实例级解决缺失数据问题的IMVC方法不同,这项工作提供了如何从图补全的角度克服聚类不完整多视图数据的挑战的新见解。

前景:

在高缺失率的情况下,现有的IMVC方法很难获得满意的结果。当每个类的可用数据量非常小时,这个问题会进一步恶化。因此,如何在这些情况下获得更好的解决方案仍然是现有IMVC方法面临的关键挑战。此外,我们还将考虑如何降低我们的框架的计算复杂度,以提高解决大规模多视图聚类问题的效率。

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值