基于不完整多视图聚类的自适应图补全

本人理解,其实这里的自适应就是说的填充是自适应的,然后在第二步视图间推断填充的时候加了一个权重,这个权重不是自适应的很一般的权重用法。

摘要:

现有的针对不完整多视图数据的聚类方法忽略了缺失视图的隐藏信息和不同视图的信息不平衡。为了解决这些问题,本文提出了一种基于自适应图补全的不完全多视图聚类方法(AGC_IMC)。具体而言,AGC_IMC开发了一个图补全和共识表示学习的联合框架,该框架主要包含三个组成部分,即视图内保存、视图间推断和共识表示学习。为了减少信息不平衡的负面影响,AGC_IMC在共识表示学习过程中引入了一些自适应权重来平衡不同观点的重要性。

前言:

谱聚类

谱聚类主要是提取一个揭示样本间内在关系的图来进行聚类,因此可以看作是基于图的聚类方法。对于数据集X =[x1,x2,…xn]∈Rm×n,谱聚类一般首先从数据中构造一个非负元素、对称结构的相似图W∈Rn×n,其中m和n分别表示特征维数和样本数。在相似图中ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值