数据结构(二叉树,堆)

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林

孩子兄弟表示法

保存值域,也要保存结点和结点之间的关系

typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

二叉树概念及结构

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。前h-1层满的,最后一层从左到右必须是连续的

二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树第i层最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树最大结点数2^h-1 .

F(h)=2^0+2^1+2^2+2^3+....+2^(h-1)

F(h)=2^h-1

假设这棵树N个节点  F(h)=2^h-1=N    h=log2(N+1)


3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有

n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1) (ps:log2(n+1) 是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

二叉树的存储结构

顺序存储(完全二叉树,满二叉树)

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树
二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

链式存储

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{

	struct BinTreeNode* _pLeft; // 指向当前节点左孩子
	struct BinTreeNode* _pRight; // 指向当前节点右孩子
	BTDataType _data; // 当前节点值域
};
// 三叉链
struct BinaryTreeNode
{
	struct BinTreeNode* _pParent; // 指向当前节点的双亲
	struct BinTreeNode* _pLeft; // 指向当前节点左孩子
	struct BinTreeNode* _pRight; // 指向当前节点右孩子
	BTDataType _data; // 当前节点值域
};

 二叉树链式结构

typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType _data;
	struct BinaryTreeNode* _left;
	struct BinaryTreeNode* _right;
}BTNode;
BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	node1->_left = node2;
	node1->_right = node4;
	node2->_left = node3;
	node4->_left = node5;
	node4->_right = node6;
	return node1;
}

二叉树的遍历

前序、中序以及后序遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

前序:根 左子树 右子树

中序:左子树 根 右子树

后序:左子树 右子树 根

 

前序遍历 

void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	printf("%d ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
}

中序遍历 

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

后序遍历

void LaOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	LaOrder(root->left);
	LaOrder(root->right);
	printf("%d ", root->data);
}

节点个数

void TreeSize(BTNode* root, int* psize)
{
	if (root == NULL)
		return 0;
	else
		++(*psize);

	TreeSize(root->left, psize);
	TreeSize(root->right, psize);
}

	int size = 0;
	TreeSize(root, &size);
	printf("TreeSize:%d\n", size);

空:0个

不为空:左子树+右子树+1 

 

int TreeSize(BTNode* root)
{
	return root == NULL ? 0 :
		TreeSize(root->left) + TreeSize(root->right) + 1;
}

叶子节点

int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;

	if (root->left == NULL && root->right == NULL)
		return 1;

	return TreeLeafSize(root->left)
		+ TreeLeafSize(root->right);
}

 

二叉树高度

空:0

不为空: 左子树高度 右子树高度 大的那个+1

int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	int leftHeight = TreeHeight(root->left);
	int rightHeight = TreeHeight(root->right);

	return leftHeight > rightHeight ?
		leftHeight + 1 : rightHeight + 1;
}
// 有效率问题  重复计算
int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	return TreeHeight(root->left) > TreeHeight(root->right) ?
		TreeHeight(root->left) + 1 : TreeHeight(root->right) + 1;
}

第k层节点个数

空:0

非空且k==1 :返回1

非空且k>1   :左子树的第k-1层 + 右子树的第k-1层

int TreeLevelKSize(BTNode* root, int k)
{
	if (root == NULL)
		return 0;

	if (k == 1)
		return 1;

	// 子问题
	return TreeLevelKSize(root->left, k - 1)
		+ TreeLevelKSize(root->right, k - 1);
}

 查找值为x的节点

BTNode* TreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;

	if (root->data == x)
		return root;

	BTNode* ret1 = TreeFind(root->left, x);
	if (ret1)
		return ret1;

	BTNode* ret2 = TreeFind(root->right, x);
	if (ret2)
		return ret2;

	return NULL;
}

前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
 

二叉树销毁

void TreeDestory(BTNode* root)
{
	if (root == NULL)
		return;

	TreeDestory(root->left);
	TreeDestory(root->right);
	free(root);
}

层序遍历  ---  上一层带下一层

从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程

void TreeLevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);//删除的是队列的节点

		printf("%d ", front->data);

		if(front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);
	}

	QueueDestroy(&q);
}

判断二叉树是否是完全二叉树

bool TreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		// 遇到第一个空,就可以开始判断,如果队列中还有非空,就不是完全二叉树
		if (front == NULL)
		{
			break;
		}

		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
	}

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		// 如果有非空,就不是完全二叉树
		if (front)
		{
			QueueDestroy(&q);
			return false;
		}
	}

	QueueDestroy(&q);
	return true;
}

 

堆(适用于完全二叉树,满二叉树)

大堆:

a.完全二叉树

b.任何一个父亲>=孩子

小堆:

a.完全二叉树

b.任何一个父亲<=孩子


堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树

堆的实现

把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组

 堆的创建

给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆

1. 建堆
升序:建大堆
降序:建小堆
2. 利用堆删除思想来进行排序

 

堆向下调整算法

从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:

左右子树必须是一个堆,才能调整

int array[] = {27,15,19,18,28,34,65,49,25,37};   o(logN)

//AdjustDown(php->a, php->size, 0);
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = (parent + 1) / 2;
	while (child < n)
	{
		if (child+1<n&&a[child + 1] < a[child])
		{
			++child;
		 }
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

堆的插入---向上调整

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	//while(parent>=0)  当child=0时,parent=(0-1)/2=0,但程序能跑通
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}//小堆

堆的删除

删除堆是删除堆顶的数据,将堆顶的数据跟最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法  (小堆时需要保证左右子树均为堆)

//AdjustDown(php->a, php->size, 0);
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = (parent + 1) / 2;
	while (child < n)
	{
		if (child+1<n&&a[child + 1] < a[child])
		{
			++child;
		 }
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

建堆

向上调整   时间复杂度 o(N*logN)

//int a[] = { 6,95,56,4,57,555 };
for(int i = 1; i < n; i++)
{
	AdjustUp(a, i);//约等于插入数据,向上排序
 }
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	//while(parent>=0)  当child=0时,parent=(0-1)/2=0,但程序能跑通
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

向下调整 ---- 先确保调整数左右均为堆  时间复杂度o(N)

for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
	AdjustDown(a, n, i);
}
//AdjustDown(php->a, php->size, 0);
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = (parent + 1) / 2;
	while (child < n)
	{
		if (child+1<n&&a[child + 1] < a[child])
		{
			++child;
		 }
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

 从5开始向下调整,最后调整到根节点时,左右均为堆

 

升序,降序排序                    堆排序  时间复杂度:o(N*logN)

升序,建大堆

降序,建小堆

void HeapSort(int* a, int n)
{
	for (int i = 1; i < n; i++)
	{
		AdjustUp(a, i);//降序,建小堆
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
void HeapSort(int* a, int n)
{
    //建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
    {
	    AdjustDown(a, n, i);
    }
    //排序   o(N*logN)
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

Top-k

求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

如果数据量非常大,排序就不太可取(可能数据都不能一下子全部加载到内存中)
1. 用数据集合中前K个元素来建堆  o(K)
        前k个最大的元素,则建小堆
        前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素 覆盖根位置,向下调整  o(logK*(N-K))
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。 

合计:o(N)

// 建K个数的小堆
	for (int i = (k-1-1)/2; i>=0 ; i--)
	{
		AdjustDown(kminheap, k, i);
	}

	// 读取剩下的N-K个数
	int x = 0;
	while (fscanf(fout, "%d", &x) > 0)
	{
		if (x > kminheap[0])
		{
			kminheap[0] = x;
			AdjustDown(kminheap, k, 0);
		}
	}

	printf("最大前%d个数:", k);
	for (int i = 0; i < k; i++)
	{
		printf("%d ", kminheap[i]);
	}
	printf("\n");
}
  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值