算法题(146):最大子段和

审题:
本题需要我们找到给定数组中子段之和和最大的sum值

思路:

方法一:暴力解法

我们可以使用双层for循环,第一层循环负责遍历每一个数组元素,然后分别以他们为子段起点,第二层循环从第一层循环的索引开始接着往下遍历累加结果到sum中,且遍历的时候不断用max方法让sum与answer进行比对,如果出现sum小于0就停止当前子段和的搜索,因为

即使后面的数再大,我们前面的sum也对后面的数产生了负作用。
方法二:贪心

其实我们不需要进行两层for循环,一旦出现sum小于0,说明前面一段的所有元素都不可能是最大子段和的开头索引。

贪心策略:从开头索引开始进行遍历,一旦sum小于0就将sum置为0,接着往下遍历

贪心策略证明:

假设出现了sum小于0的那一段元素存在最大子段和的初始索引

情况1:最大子段在sum内

Sak<Sck,所以Sak-Sck < 0,即Sac<0。而ac段的总和不会小于0,因为如果他小于0(也就是此时sum就小于0了),那么就不会存在Sab段,直接在Sac段就截断了

情况2:最大子段不全在sum内

我们知道:Scb>Sab

若Sab>Scb,最大子段和的开始位置就是a

而此时由于Sac+Scb = Sab,我们得出Sac又要小于0,同理此时也是不合理的

综上:最大子段和的开始位置不会出现在sum小于0的数据段中,可以直接舍弃

解题:
 

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 2e5 + 10;
typedef long long ll;
int n;
int a[N];
ll answer = -1e7;
ll sum;
int main()
{
	//数据录入
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
	}
	//遍历查找
	for (int i = 1; i <= n; i++)
	{
		sum += a[i];
		answer = max(sum, answer);
		if (sum < 0)
			sum = 0;
	}
	cout << answer << endl;
	return 0;
}

P1115 最大子段和 - 洛谷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值