《画解数据结构》三十张彩图,画解二叉搜索树_二叉搜索树程序流图

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

h

1

=

2

h

1

1 + 2 + 4 + … + 2^{h-1} = 2^h - 1

1+2+4+…+2h−1=2h−1

3)性质3

【性质3】对于任意一棵二叉树

T

T

T,如果叶子结点数为

x

0

x_0

x0​,度为 2 的结点数为

x

2

x_2

x2​,则

x

0

=

x

2

1

x_0 = x_2 + 1

x0​=x2​+1

x

1

x_1

x1​ 代表度 为 1 的结点数,总的结点数为

n

n

n,则有:

n

=

x

0

x

1

x

2

n = x_0 + x_1 + x_2

n=x0​+x1​+x2​
  任意一个结点到它孩子结点的连线我们称为这棵树的一条边,对于任意一个非空树而言,边数等于结点数减一,令边数为

e

e

e,则有:

e

=

n

1

e = n-1

e=n−1

对于度为 1 的结点,可以提供 1 条边,如图中的黄色结点;对于度为 2 的结点,可以提供 2 条边,如图中的红色结点。所以边数又可以通过度为 1 和 2 的结点数计算得出:

e

=

x

1

2

x

2

e = x_1 + 2 x_2

e=x1​+2x2​  联立上述三个等式,得到:

e

=

n

1

=

x

0

x

1

x

2

1

=

x

1

2

x

2

e = n-1 = x_0+x_1+x_2 - 1 = x_1 + 2 x_2

e=n−1=x0​+x1​+x2​−1=x1​+2x2​  化简后,得证:

x

0

=

x

2

1

x_0 = x_2 + 1

x0​=x2​+1

4)性质4

【性质4】具有

n

n

n 个结点的完全二叉树的深度为

l

o

g

2

n

1

\lfloor log_2n \rfloor + 1

⌊log2​n⌋+1。

由【性质2】可得,深度为

h

h

h 的二叉树至多有

2

h

1

2^{h}-1

2h−1 个结点。所以,假设一棵树的深度为

h

h

h,它的结点数为

n

n

n,则必然满足:

n

2

h

1

n \le 2^{h}-1

n≤2h−1  由于是完全二叉树,它一定比深度为

h

1

h-1

h−1 的结点数要多,即:

2

h

1

1

<

n

2^{h-1}-1 \lt n

2h−1−1<n  将上述两个不等式,稍加整理,得到:

2

h

1

n

<

2

h

2^{h-1} \le n \lt 2^h

2h−1≤n<2h  然后,对不等式两边取以2为底的对数,得到:

h

1

l

o

g

2

n

<

h

h-1 \le log_2n \lt h

h−1≤log2​n<h  这里,由于

h

h

h 一定是整数,所以有:

h

=

l

o

g

2

n

1

h = \lfloor log_2n \rfloor + 1

h=⌊log2​n⌋+1

二、二叉树的存储

1、顺序表存储

二叉树的顺序存储就是指利用数组对二叉树进行存储。结点的存储位置即数组下标,能够体现结点之间的逻辑关系,比如父结点和孩子结点之间的关系,左右兄弟结点之间的关系 等等。

1)完全二叉树

来看一棵完全二叉树,我们对它进行如下存储。

编号代表了数组下标的绝对位置,映射后如下:

下标0123456789101112

d

a

t

a

data

data |

− |

a

a

a |

b

b

b |

c

c

c |

d

d

d |

e

e

e |

f

f

f |

g

g

g |

h

h

h |

i

i

i |

j

j

j |

k

k

k |

l

l

l |
|   这里为了方便,我们把数组下标为 0 的位置给留空了。这样一来,当知道某个结点的下标

x

x

x,就可以知道它左右儿子的下标分别为

2

x

2x

2x 和

2

x

1

2x+1

2x+1;反之,当知道某个结点的下标

x

x

x,也能知道它父结点的下标为

x

2

\lfloor \frac x 2 \rfloor

⌊2x​⌋。 | | | | | | | | | | | | | |

2)非完全二叉树

对于非完全二叉树,只需要将对应不存在的结点设置为空即可。

  编号代表了数组下标的绝对位置,映射后如下:

下标0123456789101112

d

a

t

a

data

data |

− |

a

a

a |

b

b

b |

c

c

c |

d

d

d |

e

e

e |

f

f

f |

g

g

g |

− |

− |

− |

k

k

k |

l

l

l |

3)稀疏二叉树

对于较为稀疏的二叉树,就会有如下情况出现,这时候如果用这种方式进行存储,就比较浪费内存了。

  编号代表了数组下标的绝对位置,映射后如下:

下标0123456789101112

d

a

t

a

data

data |

− |

a

a

a |

b

b

b |

c

c

c |

d

d

d |

− |

− |

g

g

g |

h

h

h |

− |

− |

− |

− |
|   于是,我们可以采取链表进行存储。 | | | | | | | | | | | | | |

2、链表存储

二叉树每个结点至多有两个孩子结点,所以对于每个结点,设置一个 数据域 和 两个 指针域 即可,指针域 分别指向 左孩子结点 和 右孩子结点。

typedef struct TreeNode {
    DataType data;
    struct TreeNode \*left;   // (1)
    struct TreeNode \*right;  // (2)
}TreeNode;

  • (

1

)

(1)

(1) left指向左孩子结点;

  • (

2

)

(2)

(2) right指向右孩子结点;

三、二叉树的遍历

二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点访问一次且仅被访问一次。
  对于线性表的遍历,要么从头到尾,要么从尾到头,遍历方式较为单纯,但是树不一样,它的每个结点都有可能有两个孩子结点,所以遍历的顺序面临着不同的选择。
  二叉树的常用遍历方法有以下四种:前序遍历、中序遍历、后序遍历、层序遍历。
  我们用 void visit(TreeNode *root)这个函数代表访问某个结点,这里为了简化问题,访问结点的过程就是打印对应数据域的过程。如下代码所示:

void visit(TreeNode \*root) {
    printf("%c", root->data);
}

1、 前序遍历

1)算法描述

【前序遍历】如果二叉树为空,则直接返回。否则,先访问根结点,再递归前序遍历左子树,再递归前序遍历右子树。

  前序遍历的结果如下:

a

b

d

g

h

c

e

f

i

abdghcefi

abdghcefi。

2)源码详解
void preorder(TreeNode \*root) {
    if(root == NULL) {
        return ;            // (1)
    }
    visit(root);            // (2)
    preorder(root->left);   // (3)
    preorder(root->right);  // (4)
}

  • (

1

)

(1)

(1) 待访问结点为空时,直接返回;

  • (

2

)

(2)

(2) 先访问当前树的根;

  • (

3

)

(3)

(3) 再前序遍历左子树;

  • (

4

)

(4)

(4) 最后前序遍历右子树;

2、 中序遍历

1)算法描述

【中序遍历】如果二叉树为空,则直接返回。否则,先递归中序遍历左子树,再访问根结点,再递归中序遍历右子树。
在这里插入图片描述
  中序遍历的结果如下:

g

d

h

b

a

e

c

i

f

gdhbaecif

gdhbaecif。

2)源码详解
void inorder(TreeNode \*root) {
    if(root == NULL) {
        return ;            // (1)
    }
    inorder(root->left);    // (2)
    visit(root);            // (3)
    inorder(root->right);   // (4)
}

  • (

1

)

(1)

(1) 待访问结点为空时,直接返回;

  • (

2

)

(2)

(2) 先中序遍历左子树;

  • (

3

)

(3)

(3) 再访问当前树的根;

  • (

4

)

(4)

(4) 最后中序遍历右子树;

3、 后序遍历

1)算法描述

【后序遍历】如果二叉树为空,则直接返回。否则,先递归后遍历左子树,再递归后序遍历右子树,再访问根结点。

  后序遍历的结果如下:

g

h

d

b

e

i

f

c

a

ghdbeifca

ghdbeifca。

2)源码详解
void postorder(TreeNode \*root) {
    if(root == NULL) {
        return ;            // (1)
    }
    postorder(root->left);  // (2)
    postorder(root->right); // (3)
    visit(root);            // (4)
}

  • (

1

)

(1)

(1) 待访问结点为空时,直接返回;

  • (

2

)

(2)

(2) 先后序遍历左子树;

  • (

3

)

(3)

(3) 再后序遍历右子树;

  • (

4

)

(4)

(4) 再访问当前树的根;

四、二叉搜索树的概念

1、定义

二叉搜索树,又称为二叉排序树,二叉查找树,它满足如下四点性质:
    1)空树是二叉搜索树;
    2)若它的左子树不为空,则左子树上所有结点的值均小于它根结点的值;
    3)若它的右子树不为空,则右子树上所有结点的值均大于它根结点的值;
    4)它的左右子树均为二叉搜索树;

  如图所示,对于任何一棵子树而言,它的根结点的值一定大于左子树所有结点的值,且一定小于右子树所有结点的值。

2、用途

从二叉搜索树的定义可知,它的前提是二叉树,并且采用了递归的方式进行定义,它的结点间满足一个偏序关系,左子树根结点的值一定比父结点小,右子树根结点的值一定比父结点大。
  正如它的名字所说,构造这样一棵树的目的是为了提高搜索的速度,如果对二叉搜索树进行中序遍历,我们可以发现,得到的序列是一个递增序列。

3、数据结构

我们用孩子表示法来定义一棵二叉搜索树的结点。如下:

struct TreeNode {
    int val;                 // (1)
    struct TreeNode \*left;   // (2)
    struct TreeNode \*right;  // (3)
};

  • (

1

)

(1)

(1) 二叉搜索树结点的值,注意,这里的类型其实可以是任意类型,只要这种类型支持 关系运算符 的比较即可,本文为了把问题简单话,一律采用整数进行讲解。

  • (

2

)

(2)

(2) 二叉搜索树结点的左儿子结点的指针,没有左儿子结点时,值为NULL

  • (

3

)

(3)

(3) 二叉搜索树结点的右儿子结点的指针,没有右儿子结点时,置为NULL

4、结点创建

结点创建就是给结点分配一块内存,并且填充它的数据域和指针域,然后返回这个结点。C语言实现如下:

 struct TreeNode\* createNode(int val) { 
     struct TreeNode\* node = (struct TreeNode\*) malloc( sizeof(struct TreeNode) );
     node->val = val;
     node->left = NULL;
     node->right = NULL;
     return node;
 }

五、二叉搜索树的操作

1、查找

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

四、二叉搜索树的概念

1、定义

二叉搜索树,又称为二叉排序树,二叉查找树,它满足如下四点性质:
    1)空树是二叉搜索树;
    2)若它的左子树不为空,则左子树上所有结点的值均小于它根结点的值;
    3)若它的右子树不为空,则右子树上所有结点的值均大于它根结点的值;
    4)它的左右子树均为二叉搜索树;

  如图所示,对于任何一棵子树而言,它的根结点的值一定大于左子树所有结点的值,且一定小于右子树所有结点的值。

2、用途

从二叉搜索树的定义可知,它的前提是二叉树,并且采用了递归的方式进行定义,它的结点间满足一个偏序关系,左子树根结点的值一定比父结点小,右子树根结点的值一定比父结点大。
  正如它的名字所说,构造这样一棵树的目的是为了提高搜索的速度,如果对二叉搜索树进行中序遍历,我们可以发现,得到的序列是一个递增序列。

3、数据结构

我们用孩子表示法来定义一棵二叉搜索树的结点。如下:

struct TreeNode {
    int val;                 // (1)
    struct TreeNode \*left;   // (2)
    struct TreeNode \*right;  // (3)
};

  • (

1

)

(1)

(1) 二叉搜索树结点的值,注意,这里的类型其实可以是任意类型,只要这种类型支持 关系运算符 的比较即可,本文为了把问题简单话,一律采用整数进行讲解。

  • (

2

)

(2)

(2) 二叉搜索树结点的左儿子结点的指针,没有左儿子结点时,值为NULL

  • (

3

)

(3)

(3) 二叉搜索树结点的右儿子结点的指针,没有右儿子结点时,置为NULL

4、结点创建

结点创建就是给结点分配一块内存,并且填充它的数据域和指针域,然后返回这个结点。C语言实现如下:

 struct TreeNode\* createNode(int val) { 
     struct TreeNode\* node = (struct TreeNode\*) malloc( sizeof(struct TreeNode) );
     node->val = val;
     node->left = NULL;
     node->right = NULL;
     return node;
 }

五、二叉搜索树的操作

1、查找

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-mzeoSHFF-1713336279201)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值