P1416 攻击火星
题目描述
一群外星人将要攻击火星。
火星的地图是一个 n n n 个点的无向图。这伙外星人将按照如下方法入侵,先攻击度为 0 0 0 的点(相当于从图中删除掉它),然后是度为 1 1 1
的点,依此类推直到度为 n − 1 n-1 n−1 的点。所有的点度统计是动态统计的。(一个点删掉后,与之相连的点的点度都会 − 1 -1 −1)。外星人攻击度为某个数的点时是同时攻击的。
你需要设计这个图的边的方案来使得未被攻击的点最多。注意:你设计的图不允许自环及重边。
输入格式
输入文件包含一行一个整数 n n n。
输出格式
一行一个整数,表示最多的最后未被攻击的点。
样例 #1
样例输入 #1
3
样例输出 #1
1
提示
【样例解释】
一种可能的方案是 1 ↔ 2 ↔ 3 1\leftrightarrow 2\leftrightarrow 3 1↔2↔3,这样首先删掉度为 1 1 1 的点 1 1 1 和点
3 3 3,此时点 2 2 2 度数为 0 0 0,不会被删去。【数据范围】
- 对于 20 % 20\% 20% 的数据 1 ≤ n ≤ 10 1\le n\le 10 1≤n≤10;
- 对于 100 % 100\% 100% 的数据 1 ≤ n ≤ 5 × 1 0 4 1\le n\le 5\times 10^4 1≤n≤5×104。
【题目来源】
tinylic改编
感觉好久没发了于是找了找最近做的题,感觉这个挺有意思,也和正在学的离散有关(虽然到现在都还没学图论(当然好像图论也不是学习重点但是我挺感兴趣))
对于这道题来说,代码一点也不难,更需要我们总结规律
让我们来简单举几个例子。
当n=3的时候,有三角形and一条链的选择。可以看到。当为三角形的时候,biu直接全灭。而当为一条链的时候还剩一个独果。然后让我们看看n=4的时候。
类似四面体的也是直接全灭。而n=4的链状图形我们可以看到,在删去末端的两个点,它们的度为1,由于所有的点度统计是动态统计的,后面的点的度更新后度也为1,于是保留等于4-2。
n=6:
此时所有点的度都等于5。
让我们尝试删掉一条边。此时红色的点度为4,其余均为5.如果删掉这两个点,则变成
所有点的度均为3,错过我们的度4+1.剩下的点为6-2=4.发现规律了吗?
让我们来构造一个完全图,所有的点均与其他点相连,然后删除掉其中的一条边。此时特殊点的度为n-2,其余点为n-1.当删去这两个点之后,所有点的度变为n-3,而要删除的点的度应为n-1.这样就可以保护最多的点了
贴一个大佬的证明
代码如下
#include<iostream>
using namespace std;
int n;
int main()
{
cin>>n;
if(n==1) cout<<0;
else cout<<n-2;
return 0;
}
(碎碎念:马上期末周了,数模校赛也来了可是作为临时上场的编程手感觉还啥都不会qaq,现在也是焦虑的敲这篇文章放松放松。暑假想学c++,想学计组数据结构数模还有stm32.啊啊啊啊啊啊想学的东西太多了时间好少感觉好不够用。。。。)