[Collection与数据结构] Stack与Queue(二):队列与Queue

1. 队列

1.1 概念

只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾(Tail/Rear) 出队列:进行删除操作的一端称为队头(Head/Front).
在这里插入图片描述
这样的数据结构有些像我们平时在食堂排队打饭的操作.

1.2 队列的使用

在Java中,Queue是一个接口,底层是通过链表来实现的.所以在实例化的时候,必须用LinkedList来实例化.
在这里插入图片描述

方法功能
boolean offer(E e)入队列
E poll()出队列
peek()获取队头元素
int size()获取队列中有效元素个数
boolean isEmpty()检测队列是否为空
  • offer和poll操作的时间复杂度都是O(1),所以在使用单向链表实现队列的时候,必须使用头插尾插.如果说是尾删头插的话,删掉的时候不知道该结点的pre是谁(因为是单向链表),所以要重新遍历寻找最后一个结点,时间复杂度就不是O(1).
public static void main(String[] args) {
    Queue<Integer> q = new LinkedList<>();
    q.offer(1);
    q.offer(2);
    q.offer(3);
    q.offer(4);
    q.offer(5);                  // 从队尾入队列
    System.out.println(q.size());
    System.out.println(q.peek());  // 获取队头元素
    
    q.poll();
    System.out.println(q.poll());  // 从队头出队列,并将删除的元素返回
    
    if(q.isEmpty()){
        System.out.println("队列空");
   }else{
        System.out.println(q.size());
   }
}

1.3 队列的模拟实现

我们根据队列底层的逻辑:使用LinkedList来实现队列.

public class MyQueue {
    public static class ListNode{
        ListNode next;
        ListNode pre;
        int val;

        public ListNode(int val) {
            this.val = val;
        }
    }
    ListNode first;
    ListNode last;
    int size = 0;

    /**
     * 入队列,在双向链表的尾部插入新结点
     * @param e
     */
    public void offer (int e){
        ListNode listNode = new ListNode(e);
        if (first == null){
            first = listNode;
            last = listNode;
        }else {
            listNode.pre = last;
            last.next = listNode;
            last = listNode;
        }
        size++;
    }

    /**
     * 出队列,在链表头部删除结点
     * @return
     */
    public int poll(){
        int value = 0;
        if (first == null){
            return -1;
        } else if (first == last) {
            value = first.val;//需要先把value记录下来,以便最后返回
            first = null;
            last = null;
            //return value;//不可以直接返回first.val,否者空指针异常
        }else {
            value = first.val;
            first = first.next;
            first.pre.next = null;
            first.pre = null;
            //return value;
        }
        size --;//在返回之前size--
        return value;
    }

    /**
     * 返回队头元素
     * @return
     */
    public int peek(){
        if (first == null){
            return -1;
        }
        return first.val;
    }

    /**
     * 获取队列大小
     * @return
     */
    public int size(){
        return this.size;
    }

    /**
     * 判断队列是否为空
     * @return
     */
    public boolean isEmpty(){
        return size == 0;
    }
}

1.4 环形队列

在实际中,我们经常用的一种队列还有一种,叫做循环队列,环形队列通常由数组实现.
在这里插入图片描述
既然是环形队列,所以我们在存放元素的时候,就要按循环下标的方式来添加元素,数组下标循环公式:
(当前位置+偏移量)%数组大小.
eg:在这里插入图片描述
区分空与满的问题:
在一个队列中,一定会有队头和队尾,在队列空的时候,队列头和尾指向同一位置:
在这里插入图片描述
在队列满的时候,头和尾也会指向同一位置:
在这里插入图片描述
如果按上述的方法,我们就没有办法区别队列是空还是满了,那么我们提供以下解决方案:

  • 通过添加size属性
  • 保留一个位置(牺牲空间法)
  • 使用标记

在下面,我们只以第二种方法为例:我们令头为front,尾为rear
在这里插入图片描述
在满的时候,我们通过把最后一个位置空出来,以front = (rear+1)%array.length来表示队列满.
下面我们来通过上述方式设计循环队列:

OJ链接

class MyCircularQueue {
        public int front;//队头
        public int rear;//队尾
        public int[] elem;
        public MyCircularQueue(int k) {
            front = 0;
            rear = 0;
            elem = new int[k+1];//使用牺牲空间法来区分满和空,初始化空间的时候就要多一个空间
        }

        public boolean enQueue(int value) {
            if(isFull()){
                return false;//队列为满,返回false
            }else{
                elem[rear] = value;
                rear = (rear+1)%elem.length;
            }
            return true;
        }

        public boolean deQueue() {
            if(front == rear){
                return false;//队列为空,删除失败
            }else{
                elem[front] = 0;
                front = (front+1)%elem.length;
            }
            return true;
        }

        public int Front() {
            if(rear == front){
                return -1;
            }else{
                return elem[front];
            }
        }

        public int Rear() {
            if(rear == front){
                return -1;
            }else{
                return rear == 0? elem[elem.length-1]:elem[rear-1];
            }//分两种情况,一种是rear为0,一种是不为0的时候,为0返回数组的最后一个元素,否者返回rear指向的前一个元素
        }//队尾放的最后一个元素总是比rear指针向前一个位置,因为在插入操作的时候,最后进行了rear = (rear+1)%elem.length操作

        public boolean isEmpty() {
            if(rear == front){
                return true;//头和尾重合的时候,就是空
            }else{
                return false;
            }
        }

        public boolean isFull() {
            if(front == (rear+1)%elem.length){
                return true;//中间空出一个空间的时候,就是满
            }
            return false;
        }
    }
}

2. 双端队列

双端队列(deque)是指允许两端都可以进行入队和出队操作的队列,deque 是 “double ended queue” 的简称。那就说明元素可以从队头出队和入队,也可以从队尾出队和入队
在这里插入图片描述
Deque是一个接口,必须使用LinkedList实例化对象.
在这里插入图片描述

Deque<Integer> stack = new ArrayDeque<>();//双端队列的线性实现
Deque<Integer> queue = new LinkedList<>();//双端队列的链式实现

3. 队列与栈的综合

3.1 用栈实现队列

在用栈实现队列的时候,核心思想把握住一句话:出队列的顺序和出栈的顺序相反,对头的元素对应栈底的元素.
在这里插入图片描述

OJ链接

class MyQueue2 {//需要用两个栈来实现一个队列
        Stack<Integer> stack1;
        Stack<Integer> stack2;

        public MyQueue2() {
            stack1 = new Stack<>();
            stack2 = new Stack<>();
        }

        public void push(int x) {
            stack1.push(x);//入队列的时候就入第一个栈就可以
        }

        public int pop() {
            int value = 0;
            if (stack2.empty()){//如果stack2为空的时候,就把stack1的元素全部倒到2中
                //是因为出队列的顺序和出栈的顺序相反,对头的元素对应栈底的元素
                while(!stack1.empty()){
                    stack2.push(stack1.pop());
                }
                value = stack2.peek();
                stack2.pop();//出2的栈顶元素
            }else {//如果不为空,直接出栈顶元素
                value = stack2.peek();
                stack2.pop();
            }
            return value;
        }

        public int peek() {
            int value = 0;
            if (stack2.empty()){
                while(!stack1.empty()){
                    stack2.push(stack1.pop());
                }
                value = stack2.peek();
            }else {
                value = stack2.peek();
            }
            return value;//和pop原理一样,只不过没有元素出栈
        }

        public boolean empty() {//两个栈都为空的时候,队列为空
            if (stack1.empty() && stack2.empty()){
                return true;
            }else {
                return false;
            }
        }
    }

3.2 用队列实现栈

这道题的核心是:队列中最后一个元素对应栈顶的元素,所以要让队尾的元素露出来.
在这里插入图片描述
OJ链接

class MyStack {
        Queue<Integer> queue1;
        Queue<Integer> queue2;//使用两个队列来完成栈的实现
        public MyStack() {
            queue1 = new LinkedList<>();
            queue2 = new LinkedList<>();
        }

        public void push(int x) {
            if (empty()){//空就往任意一个队列中添加
                queue1.offer(x);
                return;//记得返回
            }
            if (!queue1.isEmpty()){//谁不为空,就往谁添加
                queue1.offer(x);
            }else {
                queue2.offer(x);
            }
        }

        public int pop() {
            if (empty()){
                return -1;
            }
            if (queue1.isEmpty()){
                while(queue2.size() != 1){//poll到队列中只有1个元素,目的是让队列中的元素与栈顶元素对应起来
                    queue1.offer(queue2.poll());
                }
                return queue2.poll();//弹出只剩一个元素的队列
            }else {
                while(queue1.size() != 1){
                    queue2.offer(queue1.poll());
                }
                return queue1.poll();
            }
        }

        public int top() {
            if (empty()){
                return -1;
            }
            int value = 0;//利用vlaue保存peek的值
            if (queue1.isEmpty()){
                while(queue2.size() != 1){
                    queue1.offer(queue2.poll());
                }
                value = queue2.peek();
                queue1.offer(queue2.poll());//先peek保存,再poll到另一个队列中
                return value;
            }else {
                while(queue1.size() != 1){
                    queue2.offer(queue1.poll());
                }
                value = queue1.peek();
                queue2.offer(queue1.poll());
                return value;
            }
        }

        public boolean empty() {
            return queue1.isEmpty() && queue2.isEmpty();
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值