pycharm中配置yolov8环境(使用gpu加速)

pycharm中配置yolov8环境(可使用gpu加速)

前提:由于已经安装过miniconda,并配置好环境在pycharm里面使用了,但是由于window重装系统,所以环境直接被全部删除了,之前所安装的miniconda文件夹需要直接删掉再重新安装。

一、安装miniconda

官网:https://www.anaconda.com/download ,最好科学上网去谷歌浏览器下载。
关于怎么下载谷歌浏览器:
https://blog.csdn.net/2301_80057424/article/details/146162900?spm=1001.2014.3001.5502

二、安装pycharm

自行下载。

三、下载cuda、cudnn

查看cuda版本
快捷键:win+r,输入cmd,再输入

nvidia -smi

在这里插入图片描述

显示的cuda版本是12.8,是电脑本身安装驱动所适合的版本,可以安装旧版本,不能装比他新的版本,但最好跟他一样,如果有这个版本适配的话。

四、配置环境

电脑搜索栏中搜索这个并打开
在这里插入图片描述

创建一个名为yolov8,python版本为3.8的虚拟环境

conda create -n yolov8 python=3.8

激活环境(即进入该环境)

conda activate yolov8
  • 其他命令(可不执行)
  1. 更新python版本(前提:拥有miniconda)
conda install python=3.10  
  1. 查看当前环境python版本
python --version
  1. 删除指定的虚拟环境(假设环境名为 myenv):
conda env remove -n myenv

五、安装pytorch(为了可以使用gpu加速)

pytorch官网 https://pytorch.org/get-started/locally/
在这里插入图片描述

选择合适的cuda版本安装,使用快捷键win+r,输出cmd,激活指定环境后,直接

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

此时科学上网可能会慢,那就关闭,在后面加上清华源加速(别的安装也可以参考这个)。

-i https://pypi.tuna.tsinghua.edu.cn/simple

总的安装命令为

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126 -i https://pypi.tuna.tsinghua.edu.cn/simple

测试是否有gpu可用,在pycharm中建立一个python文件,后缀名为.py。

import torch

# 检查 PyTorch 是否支持 CUDA
print("CUDA 是否可用:", torch.cuda.is_available())
print(torch.version.cuda)  # 检查 PyTorch 是否编译了 CUDA 版本
print(torch.backends.cudnn.version())  # 检查 cuDNN 版本
# 如果可用,打印 CUDA 版本和 GPU 设备信息
if torch.cuda.is_available():
    print("PyTorch CUDA 版本:", torch.version.cuda)
    print("GPU 设备数量:", torch.cuda.device_count())
    print("当前 GPU 设备索引:", torch.cuda.current_device())
    print("GPU 设备名称:", torch.cuda.get_device_name(torch.cuda.current_device()))
else:
    print("PyTorch 没有检测到 GPU!")

终端运行有那就成功,没成功的话就卸载这三个,重新装别的版本的。
在这里插入图片描述

以上我也失败了,所以要卸载这三个

pip uninstall torch torchvision torchaudio -y

重装适配cuda12.1的,目前最推荐该版本,但是cuda可以安装nvidia-smi显示的那个版本,我的是cuda12.8,版本太高了官网还没有合适的.

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

再运行上面的python代码,成功了。
最终版本安装为如下:
在这里插入图片描述

注意:torch版本不能>=2.6,否则后面运行代码会报错,具体什么错,大概长这样
在这里插入图片描述

在这里插入图片描述

六、安装yolov8需要的功能包

在pycharm的终端中激活虚拟环境yolov8后运行,或者使用anaconda prompt激活虚拟环境yolov8后运行。

  1. 安装requirements.txt中的相关包
pip install -r requirements.txt
  1. 安装代码运行所需的ultralytics和yolo包
pip install ultralytics
pip install yolo

七、测试

有两种方式判断是否运行成功

方式一

终端运行

 yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
方式二

创建一个python文件,内容为

from ultralytics import YOLO
yolo = YOLO("./yolov8n.pt", task="detect")
result = yolo(source="./ualtralytics/assets/bus.jpg", save=True)

【重要提醒!!困扰我许久,一直以为是ultralytics的问题】没单独下载权重的情况的前提下,如果你用的方式一,它会自己下载一个你指定的权重,成功运行,但是方式二就会运行不了,报下图的错。如果你先用方式二,这两个方式都能成功运行。
在这里插入图片描述

PyCharm使用YOLOv10训练数据集的步骤如下: 1. **环境配置**: - 确保已安装Python和PyCharm。 - 安装必要的库,如`torch`、`torchvision`、`opencv-python`等。可以使用以下命令: ```bash pip install torch torchvision opencv-python ``` 2. **下载YOLOv10代码**: - 从GitHub或其他代码仓库下载YOLOv10的代码库。 3. **准备数据集**: - 将数据集按照YOLOv10要求的格式进行组织。通常包括图像文件和对应的标注文件(如YOLO格式的.txt文件)。 - 数据集目录结构示例: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 4. **配置文件**: - 修改YOLOv10的配置文件(如`config.yaml`),设置数据集路径、类别数等参数。 5. **训练模型**: - 在PyCharm中打开终端,导航到YOLOv10的代码目录。 - 运行训练命令,例如: ```bash python train.py --config config.yaml ``` 6. **监控训练过程**: - 训练过程中可以通过终端输出的日志信息或使用TensorBoard进行监控。 - 启动TensorBoard命令: ```bash tensorboard --logdir=logs ``` 7. **评估和推理**: - 训练完成后,可以使用训练好的模型进行评估和推理。 - 评估命令示例: ```bash python evaluate.py --config config.yaml --weights weights/best.pt ``` - 推理命令示例: ```bash python detect.py --config config.yaml --weights weights/best.pt --source path_to_images ``` 通过以上步骤,你可以在PyCharm使用YOLOv10训练和评估你的数据集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值