pycharm中配置yolov8环境(可使用gpu加速)
前提:由于已经安装过miniconda,并配置好环境在pycharm里面使用了,但是由于window重装系统,所以环境直接被全部删除了,之前所安装的miniconda文件夹需要直接删掉再重新安装。
一、安装miniconda
官网:https://www.anaconda.com/download ,最好科学上网去谷歌浏览器下载。
关于怎么下载谷歌浏览器:
https://blog.csdn.net/2301_80057424/article/details/146162900?spm=1001.2014.3001.5502
二、安装pycharm
自行下载。
三、下载cuda、cudnn
查看cuda版本
快捷键:win+r,输入cmd,再输入
nvidia -smi
显示的cuda版本是12.8,是电脑本身安装驱动所适合的版本,可以安装旧版本,不能装比他新的版本,但最好跟他一样,如果有这个版本适配的话。
四、配置环境
电脑搜索栏中搜索这个并打开
创建一个名为yolov8,python版本为3.8的虚拟环境
conda create -n yolov8 python=3.8
激活环境(即进入该环境)
conda activate yolov8
- 其他命令(可不执行)
- 更新python版本(前提:拥有miniconda)
conda install python=3.10
- 查看当前环境python版本
python --version
- 删除指定的虚拟环境(假设环境名为 myenv):
conda env remove -n myenv
五、安装pytorch(为了可以使用gpu加速)
pytorch官网 https://pytorch.org/get-started/locally/
选择合适的cuda版本安装,使用快捷键win+r,输出cmd,激活指定环境后,直接
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
此时科学上网可能会慢,那就关闭,在后面加上清华源加速(别的安装也可以参考这个)。
-i https://pypi.tuna.tsinghua.edu.cn/simple
总的安装命令为
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126 -i https://pypi.tuna.tsinghua.edu.cn/simple
测试是否有gpu可用,在pycharm中建立一个python文件,后缀名为.py。
import torch
# 检查 PyTorch 是否支持 CUDA
print("CUDA 是否可用:", torch.cuda.is_available())
print(torch.version.cuda) # 检查 PyTorch 是否编译了 CUDA 版本
print(torch.backends.cudnn.version()) # 检查 cuDNN 版本
# 如果可用,打印 CUDA 版本和 GPU 设备信息
if torch.cuda.is_available():
print("PyTorch CUDA 版本:", torch.version.cuda)
print("GPU 设备数量:", torch.cuda.device_count())
print("当前 GPU 设备索引:", torch.cuda.current_device())
print("GPU 设备名称:", torch.cuda.get_device_name(torch.cuda.current_device()))
else:
print("PyTorch 没有检测到 GPU!")
终端运行有那就成功,没成功的话就卸载这三个,重新装别的版本的。
以上我也失败了,所以要卸载这三个
pip uninstall torch torchvision torchaudio -y
重装适配cuda12.1的,目前最推荐该版本,但是cuda可以安装nvidia-smi显示的那个版本,我的是cuda12.8,版本太高了官网还没有合适的.
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
再运行上面的python代码,成功了。
最终版本安装为如下:
注意:torch版本不能>=2.6,否则后面运行代码会报错,具体什么错,大概长这样
六、安装yolov8需要的功能包
在pycharm的终端中激活虚拟环境yolov8后运行,或者使用anaconda prompt激活虚拟环境yolov8后运行。
- 安装requirements.txt中的相关包
pip install -r requirements.txt
- 安装代码运行所需的ultralytics和yolo包
pip install ultralytics
pip install yolo
七、测试
有两种方式判断是否运行成功
方式一
终端运行
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
方式二
创建一个python文件,内容为
from ultralytics import YOLO
yolo = YOLO("./yolov8n.pt", task="detect")
result = yolo(source="./ualtralytics/assets/bus.jpg", save=True)
【重要提醒!!困扰我许久,一直以为是ultralytics的问题】没单独下载权重的情况的前提下,如果你用的方式一,它会自己下载一个你指定的权重,成功运行,但是方式二就会运行不了,报下图的错。如果你先用方式二,这两个方式都能成功运行。