电路分析基础

  • 集总参数: 当电路的尺寸远小于其使用时最高工作频率所对应的波长时, 可以把元件的作用集总在一起, 用有限个R, L, C元件来描述时, 电路参数称集总参数.
  • 分布参数: 当电路尺寸大于其使用时最高工作频率所对应的波长时, 电路中电压, 电流,不单是时间的函数, 还是空间的坐标的函数.
  • 功率: 单位时间能量的变化,再关联方向下:
    p = d w d t → p = v d q d t = v i p=\frac{dw}{dt} \to p= v\frac{dq}{dt}=vi p=dtdwp=vdtdq=vi
    若功率为正, 称为吸收功率, 消耗能量
    若功率为负, 称为输出功率, 提供能量
  • 并联分流公式: i n = G n G e q i i_n=\frac{G_n}{G_{eq}}i in=GeqGni
  • T型- Π \Pi Π型等效变换:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 输入电阻: 不含独立电源(可含有受控源)的单口网络, 或双端口网络输入端口的电压和电流之比. (即从输入端口看的等 效电阻).

复数的表示

  • 复数的一般表达方法为 F = a + b i F=a+bi F=a+bi
  • 欧拉公式: e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ, 根据欧拉公式,有 F = a + b i = ∣ F ∣ c o s θ + i ∣ F ∣ s i n θ = ∣ F ∣ e i θ ∣ F ∣ = a 2 + b 2 , θ = a r c t g b a F=a+bi=|F|cos\theta+i|F|sin\theta=|F|e^{i\theta}\\[2ex] |F|=\sqrt{a^2+b^2},\theta=arctg\frac{b}{a} F=a+bi=Fcosθ+iFsinθ=FeiθF=a2+b2 ,θ=arctgab
  • 复数的极坐标表达方式: F = ∣ F ∣ ∠ θ F=|F|\angle \theta F=Fθ
  • 复数加减法.
    a 1 + b 1 i + a 2 + b 2 i = ( a 1 + a 2 ) + i ( b 1 + b 2 ) a_1+b_1i+a_2+b_2i=(a_1+a_2)+i(b_1+b_2) a1+b1i+a2+b2i=(a1+a2)+i(b1+b2)
    极坐标形式的负数加减可以用图示法计算.
  • 复数乘除法–极坐标
    F 1 = ∣ F 1 ∣ ∠ θ 1 , F 2 = ∣ F 2 ∣ ∠ θ 2 F 1 ⋅ F 2 = ∣ F 1 ∣ e j θ 1 ⋅ ∣ F 2 ∣ e j θ 2 = ∣ F 1 ∣ ∣ F 2 ∣ ∠ θ 1 + θ 2 F_1=|F_1|\angle \theta_1,F_2=|F_2|\angle \theta_2\\[2ex] F_1\cdot F_2=|F_1|e^{j\theta_1}\cdot|F_2|e^{j\theta_2}=|F_1||F_2|\angle\theta_1+\theta_2 F1=F1θ1,F2=F2θ2F1F2=F1ejθ1F2ejθ2=F1F2θ1+θ2

正弦量的表示

  • 正弦量的向量表示. 对于正弦量 I c o s ( ω x + φ ) 给 e j ( ω x + φ ) 乘 2 I , 得 到 2 I e j ( ω x + φ ) = 2 I c o s ( ω x + φ ) + 2 j I s i n ( ω x + φ ) Icos(\omega x+\varphi)\\[2ex] 给e^{j(\omega x+\varphi)}乘\sqrt2I,得到\\[2ex] \sqrt2Ie^{j(\omega x+\varphi)}=\sqrt2Icos(\omega x+\varphi)+\sqrt2jIsin(\omega x+\varphi) Icos(ωx+φ)ej(ωx+φ)2 I,2 Iej(ωx+φ)=2 Icos(ωx+φ)+2 jIsin(ωx+φ)
    其实部等于上面的正弦量, 因此可以使用 R e [ 2 I e j θ ] Re[\sqrt2Ie^{j\theta}] Re[2 Iejθ]表达一个正弦量, 2 I e j θ \sqrt2Ie^{j\theta} 2 Iejθ是复指数函数, 称为旋转相量.
  • I ( x ) = R e [ I e j ( ω x + φ ) ] = R e [ I e j ω x e j φ ] 令 I ˙ = I e j φ , 带 入 上 式 , I ( x ) = R e [ I ˙ e j ω x ] I ˙ = I e j φ = I ∠ φ I(x)=Re[Ie^{j(\omega x+\varphi)}]=Re[Ie^{j\omega x}e^{j\varphi}]\\[2ex] 令\dot I=Ie^{j\varphi}, 带入上式,I(x)=Re[\dot Ie^{j\omega x}]\\[2ex] \dot I=Ie^{j\varphi}=I\angle\varphi I(x)=Re[Iej(ωx+φ)]=Re[Iejωxejφ]I˙=Iejφ,,I(x)=Re[I˙ejωx]I˙=Iejφ=Iφ, I ˙ \dot I I˙称为 I e j ω x e j φ Ie^{j\omega x}e^{j\varphi} Iejωxejφ的复振幅.用 I ˙ \dot I I˙表示正弦量, 称其为正弦量的相量.
  • 相量的微分性质.
    f ( t ) = F ˙ = F ∠ ϕ e i ⋅ π 2 = i d f d t = j ω F ˙ = ω F ∠ ( ϕ + 9 0 o ) f(t)=\dot F=F\angle\phi\\[2ex] e^{i\cdot\frac{\pi}{2}}=i\\[2ex] \frac{df}{dt}=j\omega\dot F=\omega F\angle(\phi+90^o) f(t)=F˙=Fϕei2π=idtdf=jωF˙=ωF(ϕ+90o)
  • 电容电感的相量形式:

电容C: I = C d V d t v ( t ) = 2 V c o s ( ω t + φ ) = R e [ V ˙ e j ω t ] i ( t ) = C d R e [ V ˙ e j ω t ] d t = R e [ j ω C V e j ω t ] , I ˙ = j ω C V ˙ = ω V ∠ ( ϕ + 9 0 o ) I=C\frac{dV}{dt}\\[2ex] v(t)=\sqrt2Vcos(\omega t+\varphi)=Re[\dot Ve^{j\omega t}]\\[2ex] i(t)=C\frac{dRe[\dot Ve^{j\omega t}]}{dt}=Re[j\omega CVe^{j\omega t}],\\[2ex] \dot I=j\omega C\dot V=\omega V\angle(\phi+90^o) I=CdtdVv(t)=2 Vcos(ωt+φ)=Re[V˙ejωt]i(t)=CdtdRe[V˙ejωt]=Re[jωCVejωt],I˙=jωCV˙=ωV(ϕ+90o)
电流超前电压90度.
电感L:
i ( t ) = 2 I c o s ( ω x + ϕ ) V = L d i ( t ) d t = L d R e [ I ˙ e j ω t ] d t = R e [ j ω L I ˙ e j ω t ] V ˙ = j ω L I ˙ = ω L I ∠ ( ϕ + 9 0 o ) I ˙ = V ˙ j ω L i(t)=\sqrt2Icos(\omega x+\phi)\\[2ex] V=L\frac{di(t)}{dt}=L\frac{dRe[\dot Ie^{j\omega t}]}{dt}\\[2ex] =Re[j\omega L\dot Ie^{j\omega t}]\\[2ex] \dot V=j\omega L\dot I=\omega LI\angle(\phi+90^o)\\[2ex] \dot I=\frac{\dot V}{j\omega L} i(t)=2 Icos(ωx+ϕ)V=Ldtdi(t)=LdtdRe[I˙ejωt]=Re[jωLI˙ejωt]V˙=jωLI˙=ωLI(ϕ+90o)I˙=jωLV˙
电压超前电流90度.

  • 阻抗: 在具有电阻, 电容, 电感的电路中, 对电路电流所起的阻碍作用叫做阻抗. 阻抗常用Z表示, 是一个复数, 实部称为电阻, 虚部称为电抗. 电容在电路中对交流电所起的阻碍作用称为容抗, 电感对交流电起的阻碍作用称为感抗. 容抗和感抗总称为电抗. 阻抗的单位是欧姆.
  • 电阻的阻抗只有实部, Z R = R Z_R=R ZR=R,电压与电流同相, R称为电阻.
  • 电容的阻抗只有虚部, Z C = − 1 ω C Z_C=\frac{-1}{\omega C} ZC=ωC1, 称为容抗, 电流超前电压90度.当 ω \omega ω为0时, 容抗为 ∞ \infty .
  • 电感的阻抗只有虚部, Z L = j ω L Z_L=j\omega L ZL=jωL,称为感抗, 电压超前电流90度, 当 ω \omega ω为0时, 感抗为0.
  • 导纳电导电纳的统称, 定义为阻抗的倒数, 符号为Y, 表示为 Y = G ± j B Y=G\pm jB Y=G±jB
  • 串联电路中, 阻抗直接相加(电容阻抗为负). Z = R + j ( ω L − 1 ω C ) X = ω L − 1 ω C     网 络 电 抗 ∣ Z ∣ = R 2 + X 2     阻 抗 的 模 ϕ 2 = a r c t a n X R     阻 抗 的 幅 角 ( 阻 抗 角 ) Z=R+j(\omega L-\frac{1}{\omega C})\\[2ex] X=\omega L-\frac{1}{\omega C}\ \ \ 网络电抗\\[2ex] |Z|=\sqrt{R^2+X^2}\ \ \ 阻抗的模\\[2ex] \phi_2=arctan\frac{X}{R}\ \ \ 阻抗的幅角(阻抗角) Z=R+j(ωLωC1)X=ωLωC1   Z=R2+X2    ϕ2=arctanRX   ()
    在这里插入图片描述
    阻抗角反映电压与电流的相位关系
    ϕ > 0 \phi>0 ϕ>0, 电压超前电流, 感性电路
    ϕ < 0 \phi<0 ϕ<0, 电流超前电压, 容性电路
    ϕ = 0 \phi=0 ϕ=0, 电压电流相同, 阻性电路
  • 并联电路中, 导纳直接相加.

功率计算

  • 平均功率(有功功率): 在电压,电流为关联参考方向下, 元件或单口网络的平均功率是瞬时功率在一个时间段内的平均值.定义为
    P = 1 t 2 − t 1 ∫ t 1 t 2 p ( t ) d t = 1 t 2 − t 1 ∫ t 1 t 2 v ( t ) ⋅ i ( t ) d t P=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} p(t)dt=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}v(t)\cdot i(t)dt P=t2t11t1t2p(t)dt=t2t11t1t2v(t)i(t)dt

对于周期信号作用下的电路, 通常以一个周期内的平均功率进行衡量.
经计算, 平均功率的值为 V I c o s φ ,    ( φ = ϕ v − ϕ i ) VIcos\varphi,\ \ (\varphi=\phi_v-\phi_i) VIcosφ,  (φ=ϕvϕi).是瞬时功率的恒定分量.其中, φ \varphi φ称为功率因数角, λ = c o s φ \lambda=cos\varphi λ=cosφ称为功率因数.
平均功率表示单口网络实际消耗或产生的功率.
P = 1 T ∫ 0 T p ( t ) d t = 1 T ∫ 0 T v ( t ) ⋅ i ( t ) d t P=\frac{1}{T}\int_0^T p(t)dt=\frac{1}{T}\int_0^Tv(t)\cdot i(t)dt P=T10Tp(t)dt=T10Tv(t)i(t)dt

  • 无功功率: 网络与外电源间能量交换的大小,用Q表示, Q = V I s i n φ Q=VIsin\varphi Q=VIsinφ.
  • 视在功率: 单口网络端口电压有效值和电流有效值的乘积. 用S表示. S,P,Q之间满足直角三角关系:功率三角形
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值