- 集总参数: 当电路的尺寸远小于其使用时最高工作频率所对应的波长时, 可以把元件的作用集总在一起, 用有限个R, L, C元件来描述时, 电路参数称集总参数.
- 分布参数: 当电路尺寸大于其使用时最高工作频率所对应的波长时, 电路中电压, 电流,不单是时间的函数, 还是空间的坐标的函数.
- 功率: 单位时间能量的变化,再关联方向下:
p = d w d t → p = v d q d t = v i p=\frac{dw}{dt} \to p= v\frac{dq}{dt}=vi p=dtdw→p=vdtdq=vi
若功率为正, 称为吸收功率, 消耗能量
若功率为负, 称为输出功率, 提供能量 - 并联分流公式: i n = G n G e q i i_n=\frac{G_n}{G_{eq}}i in=GeqGni
- T型-
Π
\Pi
Π型等效变换:
- 输入电阻: 不含独立电源(可含有受控源)的单口网络, 或双端口网络输入端口的电压和电流之比. (即从输入端口看的等 效电阻).
复数的表示
- 复数的一般表达方法为 F = a + b i F=a+bi F=a+bi
- 欧拉公式: e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ, 根据欧拉公式,有 F = a + b i = ∣ F ∣ c o s θ + i ∣ F ∣ s i n θ = ∣ F ∣ e i θ ∣ F ∣ = a 2 + b 2 , θ = a r c t g b a F=a+bi=|F|cos\theta+i|F|sin\theta=|F|e^{i\theta}\\[2ex] |F|=\sqrt{a^2+b^2},\theta=arctg\frac{b}{a} F=a+bi=∣F∣cosθ+i∣F∣sinθ=∣F∣eiθ∣F∣=a2+b2,θ=arctgab
- 复数的极坐标表达方式: F = ∣ F ∣ ∠ θ F=|F|\angle \theta F=∣F∣∠θ
- 复数加减法.
a 1 + b 1 i + a 2 + b 2 i = ( a 1 + a 2 ) + i ( b 1 + b 2 ) a_1+b_1i+a_2+b_2i=(a_1+a_2)+i(b_1+b_2) a1+b1i+a2+b2i=(a1+a2)+i(b1+b2)
极坐标形式的负数加减可以用图示法计算. - 复数乘除法–极坐标
F 1 = ∣ F 1 ∣ ∠ θ 1 , F 2 = ∣ F 2 ∣ ∠ θ 2 F 1 ⋅ F 2 = ∣ F 1 ∣ e j θ 1 ⋅ ∣ F 2 ∣ e j θ 2 = ∣ F 1 ∣ ∣ F 2 ∣ ∠ θ 1 + θ 2 F_1=|F_1|\angle \theta_1,F_2=|F_2|\angle \theta_2\\[2ex] F_1\cdot F_2=|F_1|e^{j\theta_1}\cdot|F_2|e^{j\theta_2}=|F_1||F_2|\angle\theta_1+\theta_2 F1=∣F1∣∠θ1,F2=∣F2∣∠θ2F1⋅F2=∣F1∣ejθ1⋅∣F2∣ejθ2=∣F1∣∣F2∣∠θ1+θ2
正弦量的表示
- 正弦量的向量表示. 对于正弦量
I
c
o
s
(
ω
x
+
φ
)
给
e
j
(
ω
x
+
φ
)
乘
2
I
,
得
到
2
I
e
j
(
ω
x
+
φ
)
=
2
I
c
o
s
(
ω
x
+
φ
)
+
2
j
I
s
i
n
(
ω
x
+
φ
)
Icos(\omega x+\varphi)\\[2ex] 给e^{j(\omega x+\varphi)}乘\sqrt2I,得到\\[2ex] \sqrt2Ie^{j(\omega x+\varphi)}=\sqrt2Icos(\omega x+\varphi)+\sqrt2jIsin(\omega x+\varphi)
Icos(ωx+φ)给ej(ωx+φ)乘2I,得到2Iej(ωx+φ)=2Icos(ωx+φ)+2jIsin(ωx+φ)
其实部等于上面的正弦量, 因此可以使用 R e [ 2 I e j θ ] Re[\sqrt2Ie^{j\theta}] Re[2Iejθ]表达一个正弦量, 2 I e j θ \sqrt2Ie^{j\theta} 2Iejθ是复指数函数, 称为旋转相量. - I ( x ) = R e [ I e j ( ω x + φ ) ] = R e [ I e j ω x e j φ ] 令 I ˙ = I e j φ , 带 入 上 式 , I ( x ) = R e [ I ˙ e j ω x ] I ˙ = I e j φ = I ∠ φ I(x)=Re[Ie^{j(\omega x+\varphi)}]=Re[Ie^{j\omega x}e^{j\varphi}]\\[2ex] 令\dot I=Ie^{j\varphi}, 带入上式,I(x)=Re[\dot Ie^{j\omega x}]\\[2ex] \dot I=Ie^{j\varphi}=I\angle\varphi I(x)=Re[Iej(ωx+φ)]=Re[Iejωxejφ]令I˙=Iejφ,带入上式,I(x)=Re[I˙ejωx]I˙=Iejφ=I∠φ, I ˙ \dot I I˙称为 I e j ω x e j φ Ie^{j\omega x}e^{j\varphi} Iejωxejφ的复振幅.用 I ˙ \dot I I˙表示正弦量, 称其为正弦量的相量.
- 相量的微分性质.
f ( t ) = F ˙ = F ∠ ϕ e i ⋅ π 2 = i d f d t = j ω F ˙ = ω F ∠ ( ϕ + 9 0 o ) f(t)=\dot F=F\angle\phi\\[2ex] e^{i\cdot\frac{\pi}{2}}=i\\[2ex] \frac{df}{dt}=j\omega\dot F=\omega F\angle(\phi+90^o) f(t)=F˙=F∠ϕei⋅2π=idtdf=jωF˙=ωF∠(ϕ+90o) - 电容电感的相量形式:
电容C:
I
=
C
d
V
d
t
v
(
t
)
=
2
V
c
o
s
(
ω
t
+
φ
)
=
R
e
[
V
˙
e
j
ω
t
]
i
(
t
)
=
C
d
R
e
[
V
˙
e
j
ω
t
]
d
t
=
R
e
[
j
ω
C
V
e
j
ω
t
]
,
I
˙
=
j
ω
C
V
˙
=
ω
V
∠
(
ϕ
+
9
0
o
)
I=C\frac{dV}{dt}\\[2ex] v(t)=\sqrt2Vcos(\omega t+\varphi)=Re[\dot Ve^{j\omega t}]\\[2ex] i(t)=C\frac{dRe[\dot Ve^{j\omega t}]}{dt}=Re[j\omega CVe^{j\omega t}],\\[2ex] \dot I=j\omega C\dot V=\omega V\angle(\phi+90^o)
I=CdtdVv(t)=2Vcos(ωt+φ)=Re[V˙ejωt]i(t)=CdtdRe[V˙ejωt]=Re[jωCVejωt],I˙=jωCV˙=ωV∠(ϕ+90o)
电流超前电压90度.
电感L:
i
(
t
)
=
2
I
c
o
s
(
ω
x
+
ϕ
)
V
=
L
d
i
(
t
)
d
t
=
L
d
R
e
[
I
˙
e
j
ω
t
]
d
t
=
R
e
[
j
ω
L
I
˙
e
j
ω
t
]
V
˙
=
j
ω
L
I
˙
=
ω
L
I
∠
(
ϕ
+
9
0
o
)
I
˙
=
V
˙
j
ω
L
i(t)=\sqrt2Icos(\omega x+\phi)\\[2ex] V=L\frac{di(t)}{dt}=L\frac{dRe[\dot Ie^{j\omega t}]}{dt}\\[2ex] =Re[j\omega L\dot Ie^{j\omega t}]\\[2ex] \dot V=j\omega L\dot I=\omega LI\angle(\phi+90^o)\\[2ex] \dot I=\frac{\dot V}{j\omega L}
i(t)=2Icos(ωx+ϕ)V=Ldtdi(t)=LdtdRe[I˙ejωt]=Re[jωLI˙ejωt]V˙=jωLI˙=ωLI∠(ϕ+90o)I˙=jωLV˙
电压超前电流90度.
- 阻抗: 在具有电阻, 电容, 电感的电路中, 对电路电流所起的阻碍作用叫做阻抗. 阻抗常用Z表示, 是一个复数, 实部称为电阻, 虚部称为电抗. 电容在电路中对交流电所起的阻碍作用称为容抗, 电感对交流电起的阻碍作用称为感抗. 容抗和感抗总称为电抗. 阻抗的单位是欧姆.
- 电阻的阻抗只有实部, Z R = R Z_R=R ZR=R,电压与电流同相, R称为电阻.
- 电容的阻抗只有虚部, Z C = − 1 ω C Z_C=\frac{-1}{\omega C} ZC=ωC−1, 称为容抗, 电流超前电压90度.当 ω \omega ω为0时, 容抗为 ∞ \infty ∞.
- 电感的阻抗只有虚部, Z L = j ω L Z_L=j\omega L ZL=jωL,称为感抗, 电压超前电流90度, 当 ω \omega ω为0时, 感抗为0.
- 导纳是电导和电纳的统称, 定义为阻抗的倒数, 符号为Y, 表示为 Y = G ± j B Y=G\pm jB Y=G±jB
- 串联电路中, 阻抗直接相加(电容阻抗为负).
Z
=
R
+
j
(
ω
L
−
1
ω
C
)
X
=
ω
L
−
1
ω
C
网
络
电
抗
∣
Z
∣
=
R
2
+
X
2
阻
抗
的
模
ϕ
2
=
a
r
c
t
a
n
X
R
阻
抗
的
幅
角
(
阻
抗
角
)
Z=R+j(\omega L-\frac{1}{\omega C})\\[2ex] X=\omega L-\frac{1}{\omega C}\ \ \ 网络电抗\\[2ex] |Z|=\sqrt{R^2+X^2}\ \ \ 阻抗的模\\[2ex] \phi_2=arctan\frac{X}{R}\ \ \ 阻抗的幅角(阻抗角)
Z=R+j(ωL−ωC1)X=ωL−ωC1 网络电抗∣Z∣=R2+X2 阻抗的模ϕ2=arctanRX 阻抗的幅角(阻抗角)
阻抗角反映电压与电流的相位关系
ϕ > 0 \phi>0 ϕ>0, 电压超前电流, 感性电路
ϕ < 0 \phi<0 ϕ<0, 电流超前电压, 容性电路
ϕ = 0 \phi=0 ϕ=0, 电压电流相同, 阻性电路 - 并联电路中, 导纳直接相加.
功率计算
- 平均功率(有功功率): 在电压,电流为关联参考方向下, 元件或单口网络的平均功率是瞬时功率在一个时间段内的平均值.定义为
P = 1 t 2 − t 1 ∫ t 1 t 2 p ( t ) d t = 1 t 2 − t 1 ∫ t 1 t 2 v ( t ) ⋅ i ( t ) d t P=\frac{1}{t_2-t_1}\int_{t_1}^{t_2} p(t)dt=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}v(t)\cdot i(t)dt P=t2−t11∫t1t2p(t)dt=t2−t11∫t1t2v(t)⋅i(t)dt
对于周期信号作用下的电路, 通常以一个周期内的平均功率进行衡量.
经计算, 平均功率的值为
V
I
c
o
s
φ
,
(
φ
=
ϕ
v
−
ϕ
i
)
VIcos\varphi,\ \ (\varphi=\phi_v-\phi_i)
VIcosφ, (φ=ϕv−ϕi).是瞬时功率的恒定分量.其中,
φ
\varphi
φ称为功率因数角,
λ
=
c
o
s
φ
\lambda=cos\varphi
λ=cosφ称为功率因数.
平均功率表示单口网络实际消耗或产生的功率.
P
=
1
T
∫
0
T
p
(
t
)
d
t
=
1
T
∫
0
T
v
(
t
)
⋅
i
(
t
)
d
t
P=\frac{1}{T}\int_0^T p(t)dt=\frac{1}{T}\int_0^Tv(t)\cdot i(t)dt
P=T1∫0Tp(t)dt=T1∫0Tv(t)⋅i(t)dt
- 无功功率: 网络与外电源间能量交换的大小,用Q表示, Q = V I s i n φ Q=VIsin\varphi Q=VIsinφ.
- 视在功率: 单口网络端口电压有效值和电流有效值的乘积. 用S表示. S,P,Q之间满足直角三角关系: