答题卡
题目描述
牛牛即将要参加考试,他学会了填答题卡。
可惜他竖着的答题卡填成了横着的 : (
好奇的他想知道对于 n 道题,每道题 n 个选项的答题卡 ( n * n 的矩阵 ),满足横答题卡和竖答题卡图形一致的方案数有多少种。
注:每道题只能选择一个选项,即 n * n 的矩阵中只能涂黑 n 个空。求横竖对称的方案数。
输入描述
第一行给出 n。
输出描述
输出方案数,答案对 1 0 9 + 7 10^9+7 109+7 取模
示例1
输入
3
输出
4
说明
备注
对于 50 % 50\;\% 50% 的数据有 n ≤ 10 n \leq 10 n≤10
对于 100 % 100\;\% 100% 的数据有 n ≤ 1 0 5 n\le 10^5 n≤105
Code
// #include <iostream>
// #include <algorithm>
// #include <cstring>
// #include <stack>//栈
// #include <deque>//堆/优先队列
// #include <queue>//队列
// #include <map>//映射
// #include <unordered_map>//哈希表
// #include <vector>//容器,存数组的数,表数组的长度
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
typedef long long ll;
const ll mod=1e9+7;
const ll N=1e5+10;
ll a[N];
void solve()
{
ll n;
cin>>n;
a[1]=1,a[2]=2;
for(ll i=3;i<=n;i++) a[i]=(a[i-1]+(i-1)*a[i-2])%mod;
cout<<a[n]<<endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
ll t=1;
//cin>>t;
while(t--) solve();
return 0;
}