hi.动物园

P2375 [NOI2014] 动物园

题目描述

近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

某天,园长给动物们讲解 KMP 算法。

园长:“对于一个字符串 S S S,它的长度为 L L L。我们可以在 O ( L ) O(L) O(L) 的时间内,求出一个名为 n e x t \mathrm{next} next 的数组。有谁预习了 n e x t \mathrm{next} next 数组的含义吗?”

熊猫:“对于字符串 S S S 的前 i i i 个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作 n e x t [ i ] \mathrm{next}[i] next[i]。”

园长:“非常好!那你能举个例子吗?”

熊猫:“例 S S S abcababc \verb!abcababc! abcababc,则 n e x t [ 5 ] = 2 \mathrm{next}[5]=2 next[5]=2。因为 S S S的前 5 5 5个字符为 abcab \verb!abcab! abcab ab \verb!ab! ab 既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出 n e x t [ 1 ] = n e x t [ 2 ] = n e x t [ 3 ] = 0 \mathrm{next}[1] = \mathrm{next}[2] = \mathrm{next}[3] = 0 next[1]=next[2]=next[3]=0 n e x t [ 4 ] = n e x t [ 6 ] = 1 \mathrm{next}[4] = \mathrm{next}[6] = 1 next[4]=next[6]=1 n e x t [ 7 ] = 2 \mathrm{next}[7] = 2 next[7]=2 n e x t [ 8 ] = 3 \mathrm{next}[8] = 3 next[8]=3。”

园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在 O ( L ) O(L) O(L) 的时间内求出 n e x t \mathrm{next} next 数组。

下课前,园长提出了一个问题:“KMP 算法只能求出 n e x t \mathrm{next} next 数组。我现在希望求出一个更强大 n u m \mathrm{num} num 数组一一对于字符串 S S S 的前 i i i 个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作 n u m [ i ] \mathrm{num}[i] num[i]。例如 S S S aaaaa \verb!aaaaa! aaaaa,则 n u m [ 4 ] = 2 \mathrm{num}[4] = 2 num[4]=2。这是因为 S S S的前 4 4 4 个字符为 aaaa \verb!aaaa! aaaa,其中 a \verb!a! a aa \verb!aa! aa 都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而 aaa \verb!aaa! aaa 虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理, n u m [ 1 ] = 0 , n u m [ 2 ] = n u m [ 3 ] = 1 , n u m [ 5 ] = 2 \mathrm{num}[1] = 0,\mathrm{num}[2] = \mathrm{num}[3] = 1,\mathrm{num}[5] = 2 num[1]=0,num[2]=num[3]=1,num[5]=2。”

最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出 n u m \mathrm{num} num数组呢?

特别地,为了避免大量的输出,你不需要输出 n u m [ i ] \mathrm{num}[i] num[i] 分别是多少,你只需要输出所有 ( n u m [ i ] + 1 ) (\mathrm{num}[i]+1) (num[i]+1) 的乘积,对 1 0 9 + 7 10^9 + 7 109+7 取模的结果即可。

输入格式

1 1 1 行仅包含一个正整数 n n n,表示测试数据的组数。
随后 n n n 行,每行描述一组测试数据。每组测试数据仅含有一个字符串 S S S S S S 的定义详见题目描述。数据保证 S S S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

输出格式

包含 n n n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1 0 9 + 7 10^9+7 109+7 取模的结果。输出文件中不应包含多余的空行。

输入输出样例 #1

输入 #1

3
aaaaa
ab
abcababc

输出 #1

36
1
32

说明/提示

测试点编号约定
1 n ≤ 5 , L ≤ 50 n \le 5, L \le 50 n5,L50
2 n ≤ 5 , L ≤ 200 n \le 5, L \le 200 n5,L200
3 n ≤ 5 , L ≤ 200 n \le 5, L \le 200 n5,L200
4 n ≤ 5 , L ≤ 10 , 000 n \le 5, L \le 10,000 n5,L10,000
5 n ≤ 5 , L ≤ 10 , 000 n \le 5, L \le 10,000 n5,L10,000
6 n ≤ 5 , L ≤ 100 , 000 n \le 5, L \le 100,000 n5,L100,000
7 n ≤ 5 , L ≤ 200 , 000 n \le 5, L \le 200,000 n5,L200,000
8 n ≤ 5 , L ≤ 500 , 000 n \le 5, L \le 500,000 n5,L500,000
9 n ≤ 5 , L ≤ 1 , 000 , 000 n \le 5, L \le 1,000,000 n5,L1,000,000
10 n ≤ 5 , L ≤ 1 , 000 , 000 n \le 5, L \le 1,000,000 n5,L1,000,000

代码内容

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll N=1e6+10;
const ll mod=1e9+7;
ll f[N],ans[N];
char a[N];

int main()
{
    ll t;
    cin>>t;
    while(t--)
    {
        cin>>a;
        ll n=strlen(a);
        memset(f,0,sizeof(f));
        
        ans[0]=0;ans[1]=1;
        for(ll i=1,j=0;i<n;i++)//求解next
        {
            while(j&&(a[i]!=a[j])) j=f[j];
            j+=(a[i]==a[j]);
            f[i+1]=j;
            ans[i+1]=ans[j]+1;//递推记录ans
        }
        
        ll cnt=1;
        for(ll i=1,j=0;i<n;i++)
        {
            while(j&&(a[i]!=a[j])) j=f[j];
            j+=(a[i]==a[j]);
            while((j<<1)>(i+1)) j=f[j];
            cnt=(cnt*(ll)(ans[j]+1))%mod;
        }
        cout<<cnt<<endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pretty Boy Fox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值