P2375 [NOI2014] 动物园
题目描述
近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。
某天,园长给动物们讲解 KMP 算法。
园长:“对于一个字符串 S S S,它的长度为 L L L。我们可以在 O ( L ) O(L) O(L) 的时间内,求出一个名为 n e x t \mathrm{next} next 的数组。有谁预习了 n e x t \mathrm{next} next 数组的含义吗?”
熊猫:“对于字符串 S S S 的前 i i i 个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作 n e x t [ i ] \mathrm{next}[i] next[i]。”
园长:“非常好!那你能举个例子吗?”
熊猫:“例 S S S 为 abcababc \verb!abcababc! abcababc,则 n e x t [ 5 ] = 2 \mathrm{next}[5]=2 next[5]=2。因为 S S S的前 5 5 5个字符为 abcab \verb!abcab! abcab, ab \verb!ab! ab 既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出 n e x t [ 1 ] = n e x t [ 2 ] = n e x t [ 3 ] = 0 \mathrm{next}[1] = \mathrm{next}[2] = \mathrm{next}[3] = 0 next[1]=next[2]=next[3]=0, n e x t [ 4 ] = n e x t [ 6 ] = 1 \mathrm{next}[4] = \mathrm{next}[6] = 1 next[4]=next[6]=1, n e x t [ 7 ] = 2 \mathrm{next}[7] = 2 next[7]=2, n e x t [ 8 ] = 3 \mathrm{next}[8] = 3 next[8]=3。”
园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在 O ( L ) O(L) O(L) 的时间内求出 n e x t \mathrm{next} next 数组。
下课前,园长提出了一个问题:“KMP 算法只能求出 n e x t \mathrm{next} next 数组。我现在希望求出一个更强大 n u m \mathrm{num} num 数组一一对于字符串 S S S 的前 i i i 个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作 n u m [ i ] \mathrm{num}[i] num[i]。例如 S S S 为 aaaaa \verb!aaaaa! aaaaa,则 n u m [ 4 ] = 2 \mathrm{num}[4] = 2 num[4]=2。这是因为 S S S的前 4 4 4 个字符为 aaaa \verb!aaaa! aaaa,其中 a \verb!a! a 和 aa \verb!aa! aa 都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而 aaa \verb!aaa! aaa 虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理, n u m [ 1 ] = 0 , n u m [ 2 ] = n u m [ 3 ] = 1 , n u m [ 5 ] = 2 \mathrm{num}[1] = 0,\mathrm{num}[2] = \mathrm{num}[3] = 1,\mathrm{num}[5] = 2 num[1]=0,num[2]=num[3]=1,num[5]=2。”
最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出 n u m \mathrm{num} num数组呢?
特别地,为了避免大量的输出,你不需要输出 n u m [ i ] \mathrm{num}[i] num[i] 分别是多少,你只需要输出所有 ( n u m [ i ] + 1 ) (\mathrm{num}[i]+1) (num[i]+1) 的乘积,对 1 0 9 + 7 10^9 + 7 109+7 取模的结果即可。
输入格式
第
1
1
1 行仅包含一个正整数
n
n
n,表示测试数据的组数。
随后
n
n
n 行,每行描述一组测试数据。每组测试数据仅含有一个字符串
S
S
S,
S
S
S 的定义详见题目描述。数据保证
S
S
S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。
输出格式
包含 n n n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1 0 9 + 7 10^9+7 109+7 取模的结果。输出文件中不应包含多余的空行。
输入输出样例 #1
输入 #1
3
aaaaa
ab
abcababc
输出 #1
36
1
32
说明/提示
测试点编号 | 约定 |
---|---|
1 | n ≤ 5 , L ≤ 50 n \le 5, L \le 50 n≤5,L≤50 |
2 | n ≤ 5 , L ≤ 200 n \le 5, L \le 200 n≤5,L≤200 |
3 | n ≤ 5 , L ≤ 200 n \le 5, L \le 200 n≤5,L≤200 |
4 | n ≤ 5 , L ≤ 10 , 000 n \le 5, L \le 10,000 n≤5,L≤10,000 |
5 | n ≤ 5 , L ≤ 10 , 000 n \le 5, L \le 10,000 n≤5,L≤10,000 |
6 | n ≤ 5 , L ≤ 100 , 000 n \le 5, L \le 100,000 n≤5,L≤100,000 |
7 | n ≤ 5 , L ≤ 200 , 000 n \le 5, L \le 200,000 n≤5,L≤200,000 |
8 | n ≤ 5 , L ≤ 500 , 000 n \le 5, L \le 500,000 n≤5,L≤500,000 |
9 | n ≤ 5 , L ≤ 1 , 000 , 000 n \le 5, L \le 1,000,000 n≤5,L≤1,000,000 |
10 | n ≤ 5 , L ≤ 1 , 000 , 000 n \le 5, L \le 1,000,000 n≤5,L≤1,000,000 |
代码内容
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e6+10;
const ll mod=1e9+7;
ll f[N],ans[N];
char a[N];
int main()
{
ll t;
cin>>t;
while(t--)
{
cin>>a;
ll n=strlen(a);
memset(f,0,sizeof(f));
ans[0]=0;ans[1]=1;
for(ll i=1,j=0;i<n;i++)//求解next
{
while(j&&(a[i]!=a[j])) j=f[j];
j+=(a[i]==a[j]);
f[i+1]=j;
ans[i+1]=ans[j]+1;//递推记录ans
}
ll cnt=1;
for(ll i=1,j=0;i<n;i++)
{
while(j&&(a[i]!=a[j])) j=f[j];
j+=(a[i]==a[j]);
while((j<<1)>(i+1)) j=f[j];
cnt=(cnt*(ll)(ans[j]+1))%mod;
}
cout<<cnt<<endl;
}
return 0;
}