MATLAB上丝滑地调用自己训练的pytorch神经网络模型
一、环境配置准备
在MATLAB上加载pytorch环境
在MATLAB中运行pytorch的虚拟环境,需要我们自己在MATLAB的命令行输入:
pyversion 'C:\\Users\\31105\\.conda\\...\\python.exe'
中间的路径是虚拟环境的绝对路径。
如果忘记了虚拟环境在哪,要找这个路径,可以有两种方法
1, 在VScode里鼠标停在内核按键就会直接显示出来
2,在cmd中:
conda activate shi #(shi是虚拟环境名字)
Python
import torch
print(torch.path)
然后顺着torch的路径往回找就能找到python.exe的路径了
使用pth文件将训练好的模型的参数保存
这个方法应该很好找,本文就不展开讲了
二、调用文件的准备
本文也是参考了这篇文章 MATLAB调用Pytorch神经网络模型进行预测 不过为了适配自己的项目,就一些细节做了调整。在模型方面,本文将展示基于MLP模型的调用文件的具体代码。
module.py文件的准备
创建一个module.py文件。这个文件所描述的是模型的框架,具体如下:
from torch import nn
import torch.nn.functional as f
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.linear_relu_stack