MATLAB上丝滑地调用自己训练的pytorch神经网络模型

MATLAB上丝滑地调用自己训练的pytorch神经网络模型

一、环境配置准备

在MATLAB上加载pytorch环境

在MATLAB中运行pytorch的虚拟环境,需要我们自己在MATLAB的命令行输入:

pyversion 'C:\\Users\\31105\\.conda\\...\\python.exe' 

中间的路径是虚拟环境的绝对路径。

如果忘记了虚拟环境在哪,要找这个路径,可以有两种方法
1, 在VScode里鼠标停在内核按键就会直接显示出来
2,在cmd中:

conda activate shi #(shi是虚拟环境名字)
Python
import torch
print(torch.path)

然后顺着torch的路径往回找就能找到python.exe的路径了

使用pth文件将训练好的模型的参数保存

这个方法应该很好找,本文就不展开讲了

二、调用文件的准备

本文也是参考了这篇文章 MATLAB调用Pytorch神经网络模型进行预测 不过为了适配自己的项目,就一些细节做了调整。在模型方面,本文将展示基于MLP模型的调用文件的具体代码。

module.py文件的准备

创建一个module.py文件。这个文件所描述的是模型的框架,具体如下:

from torch import nn
import torch.nn.functional as f

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear_relu_stack
要使用Matlab的Python接口来调用LightGBM的Python包,需要按照以下步骤进行操作: 1. 确认已经安装了Python和LightGBM的Python包。 2. 在Matlab调用Python,需要先通过pyversion命令指定Python的版本。例如: ```matlab pyversion /usr/local/bin/python3 ``` 这里假设Python3已经安装在/usr/local/bin目录下。 3. 使用py.importlib.import_module函数来导入LightGBM的Python包。例如: ```matlab lgb = py.importlib.import_module('lightgbm'); ``` 这里将导入名为'lightgbm'的Python包,并将其保存在变量lgb中。 4. 使用lgb.train函数来训练LightGBM模型。例如: ```matlab train_data = lgb.Dataset(X_train, label=y_train); params = struct('objective', 'binary', 'num_leaves', 31, 'learning_rate', 0.05); model = lgb.train(params, train_data, 100); ``` 这里使用lgb.Dataset函数来创建训练数据集,然后通过一个参数结构体params来设置模型的参数,最后使用lgb.train函数来训练模型并将结果保存在变量model中。 5. 使用model.predict函数来进行预测。例如: ```matlab y_pred = model.predict(X_test); ``` 这里使用model.predict函数来对测试数据集进行预测,并将结果保存在变量y_pred中。 6. 最后,根据需要使用Matlab内置的函数来对预测结果进行分析和评估。 以上就是使用Matlab的Python接口来调用LightGBM的Python包的基本流程。需要注意的是,由于Matlab和Python是两种不同的编程语言,因此在使用它们进行混合编程时需要格外小心,以避免出现不必要的错误。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值