当MATLAB遇上AI大模型:手把手教你接入ChatGPT/DeepSeek

1、引言

在智能时代浪潮下,MATLAB不再只是数值计算工具——通过对接ChatGPT、DeepSeek等大语言模型(LLM),工程师和科研人员可实现智能代码生成、数据分析增强、交互式文档创建等创新应用。本文将用5分钟带你解锁MATLAB与LLM的融合之道。

2、接入原理与工具准备

核心机制

MATLAB通过HTTP/REST API与云端大模型交互,支持直接调用webwrite函数或通过Python接口桥接(需安装MATLAB Python支持包)。

环境配置

图片

3、OpenAI API对接示例

MATLAB代码示例

图片

调用示例

图片

4、DeepSeek等国产模型接入技巧

接口适配

修改API端点地址为对应平台URL(如api.deepseek.com/v1/chat/completions)。

鉴权方式

部分平台采用API Key+密钥双验证:

图片

5、六大创新应用场景

智能代码助手

  • 自动生成算法模板代码

  • 解释复杂函数的使用方法

动态文档生成

图片

硬件在环系统

  • 通过LLM实现自然语言控制Simulink仿真

  • 实时解析传感器数据的语义特征

6、关键注意事项

安全防护

  • 使用getenv读取环境变量保存API密钥

  • 禁止将密钥硬编码在脚本中

性能优化

图片

成本控制

  • 通过tokens参数限制响应长度

  • 优先选用gpt-3.5-turbo等经济模型

总之,MATLAB与大模型的结合为工程领域打开新维度:从自动生成PID控制代码到智能解释实验数据,这种跨界融合正在重新定义科研效率。

为此我们特推出了:MATLAB 2024b深度学习新特性全面解析与DeepSeek大模型集成开发高级培训班

🚀随着人工智能技术的飞速发展,其与多学科的交叉融合以及在工程实践领域的纵深拓展已成为时代潮流。在这一背景下,MATLAB 2024b深度学习工具箱应运而生,凭借架构创新与功能强化,为科研工作者提供了一套全栈式的科研创新与行业应用解决方案,具有重要的时代意义。

本教程紧密围绕该版本工具链的三大革新方向展开,致力于助力科研工作者在深度学习领域取得突破性进展。首先,构建了覆盖经典模型与前沿架构的体系化教程,从CNN、LSTM等基础网络到Transformer、GNN、PINN等新兴技术,形成了完整的知识图谱。这不仅有助于科研工作者系统地掌握深度学习的核心技术,还能使其紧跟学术前沿,为科研创新提供坚实的知识基础。

🔍其次,强化了工业级应用场景落地方案。通过YOLO目标检测模型、U-Net语义分割模型、TCN时间序列模型等实战案例,贯穿数据清洗、模型设计、训练优化到模型压缩的全生命周期管理。这一革新方向使科研工作者能够将理论知识与实际应用紧密结合,提升其解决实际问题的能力,推动科研成果向工程实践的转化。

🔗最后,首创了多模态协同开发模式,深度整合Model Hub预训练生态库、实验管理器超参优化模块,并突破性地实现了与TensorFlow/PyTorch框架互操作、大语言模型本地化部署等关键技术。这为科研工作者提供了更加灵活、高效的开发环境,有助于他们在不同框架之间自由切换,充分利用各种资源,加速科研进程。

🌟核心技术突破体现在四个方面:物理信息神经网络(PINN)模块实现微分方程约束与深度学习框架的耦合建模,为科学计算开辟了新范式;深度网络设计器新增模型剪枝与量化工具链,结合FPGA部署方案大幅提升边缘计算效率;Transformer技术专题纵向解析BERT/GPT/ViT架构演变,横向打通NLP与CV领域迁移应用;大语言模型本地部署接口支持Ollama与DeepSeek的无缝集成,构建智能对话系统开发闭环。

🎓立足于工程实践与学术前沿双重视角,本教程精心设计了16个技术模块的系统化学习路径。通过深入学习这些模块,科研工作者将能够快速掌握工业级深度学习解决方案的开发能力,为推动人工智能技术在科研与工程领域的深度融合与发展贡献自己的力量。

第一章 MATLAB 2024b深度学习工具箱新特性简介

1、MATLAB Deep Learning Toolbox概览
2、实时脚本(Live Script)与交互控件(Control)功能介绍与演示
3、批量大数据导入及Datastore类函数功能介绍与演示
4、数据清洗(Data Cleaning)功能介绍与演示
5、深度网络设计器(Deep Network Designer)功能介绍与演示
6、实验管理器(Experiment Manager)功能介绍与演示
7、MATLAB Deep Learning Model Hub简介
8、MATLAB与TensorFlow、PyTorch等深度学习框架协同工作功能介绍与演示
9、MATLAB Deep Learning Toolbox Examples简介

第二章 卷积神经网络(Convolutional Neural Network, CNN)

1、深度学习与传统机器学习的区别与联系
2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)
3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系
4、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet等)的下载与安装
5、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、Adam等)
6、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)
7、案例讲解:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)1D CNN模型解决回归拟合预测问题
8、实操练习

第三章 模型可解释性与特征可视化Model Explanation and Feature Visualization

1、什么是模型可解释性?为什么要对CNN模型进行解释?
2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、CAM(Class Activation Mapping)、GRAD-CAM、LIME(Local Interpretable Model-agnostic Explanation)、t-SNE等方法原理讲解
4、案例讲解:基于CAM/Grad-CAM的卷积神经网络模型的特征可视化
5、实操练习

第四章 迁移学习算法(Transfer Learning)

1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)
2、基于深度神经网络模型的迁移学习算法
3、案例讲解:基于Alexnet预训练模型的模型迁移
4、实操练习

第五章 循环神经网络与长短时记忆神经网络(RNN & LSTM)

1、循环神经网络(RNN)与长短时记忆神经网络(LSTM)的基本原理
2、RNN与LSTM的区别与联系
3、案例讲解:(1)时间序列预测;(2)序列-序列分类
4、实操练习

第六章 时间卷积网络(Temporal Convolutional Network, TCN)

1、时间卷积网络(TCN)的基本原理
2、TCN与1D CNN、LSTM的区别与联系
3、案例讲解:(1)时间序列预测:新冠肺炎疫情预测;(2)序列-序列分类:人体动作识别
4、实操练习

第七章 生成式对抗网络(Generative Adversarial Network)

1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以做什么?)
2、案例讲解:向日葵花图像的自动生成
3、实操练习

第八章 自编码器(AutoEncoder)

1、自编码器的组成及基本工作原理
2、经典自编码器(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)
3、案例讲解:基于自编码器的图像分类
4、实操练习

第九章 目标检测YOLO模型

1、什么是目标检测?目标检测与目标识别的区别与联系?YOLO模型的工作原理(从传统目标检测到基于深度学习的目标检测、从“两步法”的R-CNN到“一步法”的YOLO、YOLO模型的演化历史)
2、案例讲解:(1)标注工具Image Labeler功能简介与演示;(2)使用预训练模型实现图像、视频等实时目标检测;(3)训练自己的数据集:新冠疫情佩戴口罩识别
3、实操练习

第十章 图像语义分割U-Net模型

1、语义分割(Semantic Segmentation)简介
2、U-Net模型的基本原理
3、案例讲解:基于U-Net的多光谱图像语义分割

第十一章 注意力机制(Attention)

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。
2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)
3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(SelfAttention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力
4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)
5、案例演示:(1)基于注意力机制的Seq-to-Seq翻译;(2)基于注意力机制的图像描述   
6、实操练习

第十二章 Transformer模型及其在NLP和CV领域的应用

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景)
2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)
3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)
4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)
5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)
6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、上下文学习、RLHF人类反馈强化学习、多模态架构)
7、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化
8、案例演示:(1)基于BERT模型的文本分类;(2)基于ViT模型的图像分类
9、实操练习

第十三章 物理信息神经网络(PINN)

1、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)
2、案例演示:基于PINN的微分方程求解
3、实操练习

第十四章 图神经网络(GNN)

1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。
3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。
4、图卷积网络(GCN)的工作原理。
5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。
6、案例演示:(1)基于图卷积神经网络的节点分类;(2)基于图神经网络的时间序列异常点检测
7、实操练习

第十五章 深度学习模型压缩(Compression)

1、深度学习模型压缩的常用方法(裁剪、量化、Dropout、正则化等)
2、Deep Learning Toolbox Model Compression Library的安装与模型压缩
3、案例演示:基于Deep Network Designer的模型压缩
4、实操练习

第十六章 MATLAB接入ChatGPT/DeepSeek等大语言模型

1、Ollama下载与安装
2、Large Language Models (LLMs) with MATLAB下载与安装
3、ChatGPT API Key配置与MATLAB接入ChatGPT对话
4、本地部署DeepSeek大语言模型与MATLAB接入DeepSeek对话
5、案例讲解与实操练习

第十七章 讨论与答疑

1、总结与答疑讨论
2、相关学习资料分享与拷贝(图书推荐等)

★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

### Matlab 中集成和使用 AI 技术的方法 #### 使用工具箱扩展功能 为了在 MATLAB 中集成和应用人工智能技术,可以利用专门设计的工具箱来简化开发过程。MathWorks 提供了一系列强大的机器学习、深度学习和其他相关领域的产品,这些产品使得构建预测模型变得简单而高效[^2]。 #### 数据准备与预处理 有效的数据分析始于良好的数据质量控制。MATLAB 支持多种文件格式的数据导入导出操作,并提供了丰富的函数库来进行清洗、转换以及特征提取等工作。这一步骤对于后续建立可靠的AI模型至关重要。 #### 构建训练模型 借助于 Statistics and Machine Learning Toolbox 或 Deep Learning Toolbox ,用户可以在图形界面环境下轻松创建分类器或回归分析算法;也可以编写自定义脚本实现更复杂的神经网络架构搭建。此外,还可以调用预先训练好的模型作为起点快速迭代优化自己的解决方案。 #### 性能评估与部署 完成模型训练之后,应当对其进行严格的测试验证其泛化能力。MATLAB 内置了交叉验证等功能帮助检验不同参数设置下的表现差异。一旦满意,则可通过生成 C/C++ 代码或者打包成独立应用程序的方式将成果应用于实际生产环境中去。 ```matlab % 加载样本数据集 load fisheriris; X = meas; % 特征矩阵 Y = species;% 类别标签向量 % 划分训练集和测试集 cvp = cvpartition(size(X,1),'HoldOut',0.3); trainIdx = training(cvp); testIdx = test(cvp); % 训练SVM分类器 Mdl = fitcsvm(X(trainIdx,:),Y(trainIdx)); % 测试模型准确性 predictedLabels = predict(Mdl,X(testIdx,:)); accuracy = sum(predictedLabels==Y(testIdx))/numel(Y(testIdx)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值