在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample
Inputcopy Outputcopy
1
8
5
0
#include<iostream>
#include<cmath>
using namespace std;
int N, sum = 0;
int queenPos[10];
void NQueen(int k);
int main()
{
while (1)
{
cin >> N;
if (N == 0)break;
sum = 0;
NQueen(0);
cout << sum << endl;
}
return 0;
}
void NQueen(int k)//在0到k减1行皇后摆好的前提下,摆第k行及其之后的皇后
{
if (k == N)
{
sum++;
return;
}
for (int i = 0; i < N; i++)//尝试第k行皇后的位置,从第0列遍历
{
int j;
for ( j = 0; j < k; j++)//和已经摆好的皇后位置比较,查看是否冲突,j为行
{
if (queenPos[j] == i ||
abs(queenPos[j] - i) == abs(k - j))//行坐标的差等于列坐标的差,则对角线
{
break;
}
}
if (j == k)//如果没有违反规则
{
queenPos[k] = i;
NQueen(k + 1);
}
}
}