【离散数学·关系】(复习)

一、

1.集合上的二元关系:

集合A上的二元关系R是A×A的子集或从A到A的关系。

2.笛卡尔积:A×B={(a,b) | a\in Ab\in B}

问:集合A有多少种关系? 2^{n^{2}}种。(因为笛卡尔积A×A的基数为n^{2}

3.aRb表示(a,b)\inR

4.other:

二、关系的性质

1.自反性矩阵对角线上为1;

2.对称性:矩阵关于主对角线对称;

3.反对称性:说法(1):对于任意的x,y,(x,y)\in\wedge (y,x)\inR   -> x=y;

                     说法(2):若x!=y,(x,y)\inR,则一定有(y,x)\notinR。

4.传递性:用矩阵相乘判定。(若矩阵的幂为原矩阵的子集,则有传递性)

例:

{(1,1),(2,2),(3,3),(4,4)}同时满足以上四个性质。

三、组合关系

如  R_{1}\cup R_{2}, R_{2}-R_{1} 等。

四、合成 (组成)

R_{1}:A->B; R_{2}: B->C; 则 R_{2}\circ R_{1}: A->C;

五、关系的幂

R^{1}=R,归纳:R^{n+1}=R^{n}\circ R

六、关系的表示

1.用矩阵表示关系

2.用图表示关系

有向图;

a是边(a,b)的始点,b是边(a,b)的终点;

形如(a,a)的边叫做环。

   此图中,不满足自反性,满足:对称性,反对称性,传递性;

(由此图我们可以知道,对称性和反对称性可能会同时出现)

3.长度为n的路径在R^{n}中;

七、等价关系

1.等价关系

(1)满足:自反,对称,传递性

(2)若a,b由于等价关系而相关联,则称它们是等价的  ( a~b)

(3)“模m同余” 是等价关系,证明:

2.等价类

设R是定义在集合A上的等价关系,与A中的一个元素a有关系的所有元素的集合叫做a的等价类。A的关于R的等价类记作[a]_{R};当只考虑一个关系时,写为[a]。

[a]_{R}={s|(a,s)\inR};

若b\in[a]_{R},b叫这个等价类的代表元。一个等价类的任何元素都可以作为这个类的代表元。

如[1]=[4]=...={1,4,...}(模3同余)

3.等价类与划分

设R是定义在集合A上的等价关系,一下关于集合A中a、b两个元素的命题等价:

4.集合的划分  (无重复,全覆盖)

八、偏序关系

1.性质:满足自反,反对称,传递

2.记作:(S,R)  (定义在集合S上的偏序关系)

3.“整除关系” 是偏序关系  (  2|4 : 2整除4 )

Z^{+},\mid)是偏序集;   

九、可比性

十、哈塞(Hasse)图    (偏序)

1.构造步骤:

2.极大元,极小元:(可能是多个)

3.最大元,最小元:(可能不存在,若存在,只能是1个)

4.(1)上界:(不包括自己)

   (2)下界:(包括自己)

   (3)最小上界,最大下界;

例:

十一、字典顺序

  • 11
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值