【离散数学·命题逻辑】(复习)

一、

1. 命题   两个要素:(1)陈述句,(2)可判断真假

如: x+y>5,不是命题;明年11月1日是晴天,是命题(早晚可判断真假);

2.命题的否定:

  如 7*11*13=999 的否定:7*11*13!=999;

3.命题 p->q的:

(1)逆命题:q->p;

(2)逆否命题:!q->!p;

(3)反命题:!p->!q;

!!!其中,只有逆否命题总是和原命题有相同的真值。

4.合取  (且), 析取(或)

5.p和q的异或:  p\bigoplusq ; p,q中恰有一个为真时,才为真。

6.条件语句:p->q

只有p为T,q为F时,语句为F;

真值表:

叫:

(1)p蕴含q; //不能说成p推出q;

(2)若(如果)p,则q;

(3)如果p, q;

(4)q如果p;

(5)q当p;

(6)q每当p;

(7)p仅当q;  (说的是,当q不为真时,p不能为真)

(8)q除非 !p (非 不用 ! );

(9)q由p得出;

7.双条件语句:<->

只有p,q同T,或同F时,语句为T;

叫:

(1)当且仅当  (!=  仅当) (iff:   if and only if

(2)如果p那么q,反之亦然

!!!双条件语句的隐式使用:

8.逻辑运算和位运算:

逻辑中:T,F;位运算中:1,0;

位串是0位或多位的序列,位串的长度就是它所含位的数目。

9.逻辑运算符的优先级:

非>合取>析取>条件>双条件

10.重言式是一个总是正确的命题,如:p\vee!p;

二、

1.若p<->q是永真式,则p和q逻辑等价,用记号p\equivq表示;

2:

 

三、命题的可满足性:

1.如果有一个真值赋值给它的变量,使它成为真的,那么这个复合命题是可满足的。

2.复合命题是不可满足的<-其否定是重言式。

四、谓词和量词

1.P(x):x do

2.\exists x P(x),\forallx P(x);

3.连接用逻辑联接词,不要用集合上的;

4.谓词有:一元谓词,二元谓词,n元谓词等;

5.全称量化:(合取)

   存在量化:(析取)

6.德摩根量词定律:

7.存在量词 常与且 连用, 全称量词 常与 蕴含 连用。

8.量词的顺序:   (嵌套量词)

9.否定嵌套量词:

五、推理证明:

1.一个论证: 

                 横线以上:前提;横线一下:结论;

2.推理规则:

3.归结证明  (不断且只用消解)

前提和结论都必须写成字句的形式 (用“或”连接,且每一项是一个变量或变量的否定)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值