一、
1. 命题 两个要素:(1)陈述句,(2)可判断真假
如: x+y>5,不是命题;明年11月1日是晴天,是命题(早晚可判断真假);
2.命题的否定:
如 7*11*13=999 的否定:7*11*13!=999;
3.命题 p->q的:
(1)逆命题:q->p;
(2)逆否命题:!q->!p;
(3)反命题:!p->!q;
!!!其中,只有逆否命题总是和原命题有相同的真值。
4.合取 (且), 析取(或)
5.p和q的异或: pq ; p,q中恰有一个为真时,才为真。
6.条件语句:p->q
只有p为T,q为F时,语句为F;
真值表:
叫:
(1)p蕴含q; //不能说成p推出q;
(2)若(如果)p,则q;
(3)如果p, q;
(4)q如果p;
(5)q当p;
(6)q每当p;
(7)p仅当q; (说的是,当q不为真时,p不能为真)
(8)q除非 !p (非 不用 ! );
(9)q由p得出;
7.双条件语句:<->
只有p,q同T,或同F时,语句为T;
叫:
(1)当且仅当 (!= 仅当) (iff: if and only if)
(2)如果p那么q,反之亦然
!!!双条件语句的隐式使用:
8.逻辑运算和位运算:
逻辑中:T,F;位运算中:1,0;
位串是0位或多位的序列,位串的长度就是它所含位的数目。
9.逻辑运算符的优先级:
非>合取>析取>条件>双条件
10.重言式是一个总是正确的命题,如:p!p;
二、
1.若p<->q是永真式,则p和q逻辑等价,用记号pq表示;
2:
三、命题的可满足性:
1.如果有一个真值赋值给它的变量,使它成为真的,那么这个复合命题是可满足的。
2.复合命题是不可满足的<-其否定是重言式。
四、谓词和量词
1.P(x):x do
2. x P(x),x P(x);
3.连接用逻辑联接词,不要用集合上的;
4.谓词有:一元谓词,二元谓词,n元谓词等;
5.全称量化:(合取)
存在量化:(析取)
6.德摩根量词定律:
7.存在量词 常与且 连用, 全称量词 常与 蕴含 连用。
8.量词的顺序: (嵌套量词)
9.否定嵌套量词:
五、推理证明:
1.一个论证:
横线以上:前提;横线一下:结论;
2.推理规则:
3.归结证明 (不断且只用消解)
前提和结论都必须写成字句的形式 (用“或”连接,且每一项是一个变量或变量的否定)