数学实验第三版(主编:李继成 赵小艳)课后练习答案(八)(4)

文章介绍了如何通过生成随机数并计算函数y=1/x在给定区间上的积分近似欧拉常数,以及另一种利用函数取整部分积分的方式来计算欧拉常数。实验给出了两个实例并展示了计算结果。
摘要由CSDN通过智能技术生成

实验八:近似计算

练习四

1.自己设置一种计算欧拉常数近似值的方法,看你对欧拉常数的计算能精确到小数点后多少位?

从示例7的图8.5我们已经得知,只要求出每个小矩形中在函数y=1/x以上的部分的面积之和,我们就可以得知欧拉常数的值。为此,我们不妨采用生成随机数的方法。

clc;clear;sum=0;
%我们采用随机实验的方法来估计欧拉常数的值
y=rand(1,100000000);
x=rand(1,100000000)*10000+1;
for i=1:length(x)
if 1/fix(x(i))>=y(i)&&y(i)>=1/x(i)
    sum=sum+1;
end
end
sum/length(x)*10000

ans =0.572400000000000

2. ,其中函数 表示取整x的小数部分,可以证明 在[0,1]上可积,且 ,C是欧拉常数。试用此公式计算欧拉常数C.

clc;clear;
n=9999999;%这里可以改变n的值
x=1/n:1/n:1;
y=@(x)1/x-fix(1/x);
sum=0;
for i=1:length(x)-1
sum=sum+(y(x(i))+y(x(i+1)))/2*1/n;
end
1-sum

c=0.577220261393288

推荐下一篇文章:

数学实验第三版(主编:李继成 赵小艳)课后练习答案(九)(1)(2)icon-default.png?t=N7T8https://blog.csdn.net/2301_80199493/article/details/136113164?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136113164%22%2C%22source%22%3A%222301_80199493%22%7D本文由作者自创,由于时间原因,难免出现些许错误,还请大家多多指正。创作不易,请大家多多支持。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

C.L.L

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值