二叉树的递归遍历 | LeetCode 144. 二叉树的前序遍历、LeetCode 94. 二叉树的中序遍历、LeetCode 145. 二叉树的后序遍历

LeetCode 144. 二叉树的前序遍历

1、题目

题目链接:144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:
image.png

输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

示例 4:
image.png

输入:root = [1,2]
输出:[1,2]

示例 5:
image.png

输入:root = [1,null,2]
输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

2、思路

首先我们需要了解什么是二叉树的前序遍历:按照访问根节点——左子树——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。

定义 preorder(root) 表示当前遍历到 root 节点的答案。按照定义,我们只要首先将 root 节点的值加入答案,然后递归调用 preorder(root.left) 来遍历 root 节点的左子树,最后递归调用 preorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。

3、代码

#include <iostream>
#include <vector>

using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    void preorder(TreeNode* root, vector<int>& res) {
        // 如果根节点为空,则直接返回
        if (root == nullptr) return;
        // 将根节点的值添加到结果数组中
        res.push_back(root->val);
        // 递归遍历左子树
        preorder(root->left, res);
        // 递归遍历右子树
        preorder(root->right, res);
    }

    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        preorder(root, res);
        return res;
    }
};

4、复杂度分析

  • 时间复杂度:O(n),其中 n 是二叉树的节点数。每一个节点恰好被遍历一次。
  • 空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(log⁡n),最坏情况下树呈现链状,为 O(n)。

LeetCode 94. 二叉树的中序遍历

1、题目

题目链接:94. 二叉树的中序遍历
给定一个二叉树的根节点 root ,返回 它的 中序 遍历

示例 1:
image.png

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

2、思路

首先我们需要了解什么是二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。

定义 inorder(root) 表示当前遍历到 root 节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历 root 节点的左子树,然后将 root 节点的值加入答案,再递归调用 inorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。

3、代码

#include <iostream>
#include <vector>

using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    void inorder(TreeNode* root, vector<int>& res) {
        // 如果当前节点为空,则直接返回
        if (root == nullptr) return;
        // 递归遍历左子树
        inorder(root->left, res);
        // 将当前节点的值加入结果向量
        res.push_back(root->val);
        // 递归遍历右子树
        inorder(root->right, res);
    }

    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        inorder(root, res);
        return res;
    }
};

int main() {
    Solution s;
    TreeNode* root = new TreeNode(1, new TreeNode(2, new TreeNode(3), new TreeNode(4)), new TreeNode(5));
    vector<int> res = s.inorderTraversal(root);
    for (int i : res) {
        cout << i << " ";
    }
    cout << endl;
    return 0;
}

4、复杂度分析

  • 时间复杂度:O(n),其中 n 是二叉树的节点数。每一个节点恰好被遍历一次。
  • 空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(log⁡n),最坏情况下树呈现链状,为 O(n)。

LeetCode 145. 二叉树的后序遍历

1、题目

题目链接:145. 二叉树的后序遍历
给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历

示例 1:
image.png

输入:root = [1,null,2,3]
输出:[3,2,1]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点的数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

2、思路

首先我们需要了解什么是二叉树的后序遍历:按照访问左子树——右子树——根节点的方式遍历这棵树,而在访问左子树或者右子树的时候,我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。

定义 postorder(root) 表示当前遍历到 root 节点的答案。按照定义,我们只要递归调用 postorder(root->left) 来遍历 root 节点的左子树,然后递归调用 postorder(root->right) 来遍历 root 节点的右子树,最后将 root 节点的值加入答案即可,递归终止的条件为碰到空节点。

3、代码

#include <iostream>
#include <vector>

using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    void postorder(TreeNode* root, vector<int>& res) {
        // 如果根节点为空,则直接返回
        if (root == nullptr) return;
        // 递归遍历左子树
        postorder(root->left, res);
        // 递归遍历右子树
        postorder(root->right, res);
        // 将根节点的值加入结果数组中
        res.push_back(root->val);
    }

    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> res;
        postorder(root, res);
        return res;
    }
};

int main() {
    Solution s;
    TreeNode* root = new TreeNode(1, new TreeNode(2, new TreeNode(4), new TreeNode(5)), new TreeNode(3, new TreeNode(6), new TreeNode(7)));
    vector<int> res = s.postorderTraversal(root);
    for (int i : res) {
        cout << i << " ";
    }
    cout << endl;
    return 0;
}

4、复杂度分析

  • 时间复杂度:O(n),其中 n 是二叉树的节点数。每一个节点恰好被遍历一次。
  • 空间复杂度:O(n),为递归过程中栈的开销,平均情况下为 O(log⁡n),最坏情况下树呈现链状,为 O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值