简介:该文章主要是关于使用“NAND(与非)”和“NOR(或非)”化简逻辑表达式以及逻辑图相关问题的另一种思路。
PS:本以为没有必要写出来,但查了相关资料,好像没有文章提及到这一点,所以写出了这片文章。
核心内容很简单,请各位多点耐心看下去。
一. 该文主要分“NAND”和“NOR”两种情况进行讲解。(实际原理差不多)
1.形如【 Y = (AB + Cfei) D + EF 的与非式,用“NAND”画出逻辑图】之类的问题。
常见方法:
①图形法:从输出端开始,奇数层 “与非”变成“非或”。
②表达式:适用于先“与”再“或”的式子,将所有“与项式”添加两次非。
具体事例如下:
本文推荐方法.方法二:
①:根据原逻辑表达式使用“与”门和“或”门画出逻辑表达式。
②:再根据“与非”门等同于“非或”门,将原图中的“与”→“与非”,“或”→“非或”,如下图所示。
注:此处为画图简易,将“非门”(—△o—)记作“—o—”;
未做红笔处理前的部分,为第一步操作后的逻辑图。
③:将“非或”换成“与非”,再根据替换后的逻辑图,写出表达式。
2.形如【 Y = [(A+B)C fei + D ](E+F) 的或非式,用“NOR”画出逻辑图】之类的问题。
常见方法:
①图形法:从输出端开始,奇数层 “或非”变成“非与”。
②表达式:适用于先“或”再“与”的式子,将所有“或项式”添加两次非。
具体事例如下:
本文推荐方法.方法二:
①:根据原逻辑表达式使用“与”门和“或”门画出逻辑表达式。
②:再根据“或非”门等同于“非与”门,将原图中的“或”→“或非”,“与”→“非与”,如下图所示。
注:此处为画图简易,将“非门”(—△o—)记作“—o—”;
未做红笔处理前的部分,为第一步操作后的逻辑图。
③:将“非与”换成“或非”,再根据替换后的逻辑图,写出表达式。
总结:
①先根据原逻辑表达式用“与”门和“或”门画出逻辑图。
②在根据类型如:“NAND”就将“与”→“与非”,“或”→“非或”。
注意,其根本原理在于两个非门相互抵消,不要盲目的变换。
③再根据要求,统一逻辑符号。
希望本章对你有所帮助,期待下一次相遇。