1 微调前置基础
本节主要重点是带领大家实现个人小助手微调,如果想了解微调相关的基本概念,可以访问XTuner微调前置基础。
2 准备工作
环境安装:我们想要用简单易上手的微调工具包 XTuner 来对模型进行微调的话,第一步是安装 XTuner !安装基础的工具是一切的前提,只有安装了 XTuner 我们才能够去执行后续的操作。
前期准备:在完成 XTuner 的安装后,我们下一步就需要去明确我们自己的微调目标了。我们想要利用微调做一些什么事情呢,然后为了实现这个目标,我们需要准备相关的硬件资源和数据。
启动微调:在确定了自己的微调目标后,我们就可以在 XTuner 的配置库中找到合适的配置文件并进行对应的修改。修改完成后即可一键启动训练!训练好的模型也可以仅仅通过在终端输入一行命令来完成转换和部署工作!
2.1 开发机准备
我们需要前往 InternStudio 中创建一台开发机进行使用。
步骤1:登录InternStudio后,在控制台点击 “创建开发机” 按钮可以进入到开发机的创建界面。
步骤2:在 “创建开发机” 界面,选择开发机类型:个人开发机,输入开发机名称:XTuner微调,选择开发机镜像:Cuda12.2-conda。
步骤3:在镜像详情界面,点击 “使用” 链接,确认使用该镜像。
步骤4:资源配置可以选择 10% (如果有更高资源可以使用,也可以选择更高的资源配置),然后点击 “立即创建” 按钮创建开发机。
步骤5:创建完成后,在开发机列表中可以看到刚创建的开发机,点击 “进入开发机” 链接可以连接进入到开发机。
当我们准备好开发机之后,就可以进行下一步的微调任务了。
另外,进入开发机之后,请确保自己已经克隆了Tutorial仓库的资料到本地。
mkdir -p /root/InternLM/Tutorial git clone -b camp3 https://github.com/InternLM/Tutorial /root/InternLM/Tutorial
2.2 创建虚拟环境
在安装 XTuner 之前,我们需要先创建一个虚拟环境。使用 Anaconda
创建一个名为 xtuner0121
的虚拟环境,可以直接执行命令。
# 创建虚拟环境 conda create -n xtuner0121 python=3.10 -y # 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行) conda activate xtuner0121 # 安装一些必要的库 conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y # 安装其他依赖 pip install transformers==4.39.3 pip install streamlit==1.36.0