力扣45.跳跃游戏 II

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 1000
  • 题目保证可以到达 nums[n-1]

 源码如下:

class Solution {
public:
    int jump(vector<int>& nums) {
        int n = nums.size(); // 数组的大小
        int rightmost = 0; // 当前能跳到的最远位置
        int ans = 0; // 跳跃的次数
        int end = 0; // 当前跳跃的边界

        for (int i = 0; i < n - 1; i++) { // 遍历数组,不包括最后一个元素
            if (i <= rightmost) { // 如果当前位置可以到达
                rightmost = max(rightmost, i + nums[i]); // 更新能跳到的最远位置

                if (i == end) { // 如果当前位置达到了边界
                    end = rightmost; // 更新边界为能跳到的最远位置
                    ans++; // 跳跃次数加1
                }
            }
        }

        return ans; // 返回最小的跳跃次数
    }
};

代码中使用了贪心算法的思想。该算法每次都选择能跳跃到的最远位置,直到达到数组的最后一个位置。

代码解析如下:

  1. 初始化变量:

    • n:数组的大小
    • rightmost:当前能跳到的最远位置。这个变量初始值为0,表示起始位置。在遍历数组过程中,该变量会不断更新为能跳到的最远位置。
    • ans:跳跃的次数。初始值为0。
    • end:当前跳跃的边界。初始值为0。在遍历数组过程中,如果当前位置达到了边界,说明需要进行一次新的跳跃,此时边界需要更新为能跳到的最远位置,并且跳跃次数加1。
  2. 遍历数组:

    • 对于每个位置i,判断是否能到达:
    • 如果i小于等于rightmost,表示当前位置可以到达:
    • 更新能跳到的最远位置:rightmost = max(rightmost, i + nums[i])
    • 如果当前位置达到了边界:i == end,表示需要进行一次新的跳跃:
    • 更新边界为能跳到的最远位置:end = rightmost
    • 跳跃次数加1:ans++
    • 返回最小的跳跃次数:ans

总结:该算法通过遍历数组,不断更新能跳到的最远位置和当前跳跃的边界,从而求解最小的跳跃次数。算法的时间复杂度为O(n),其中n为数组的大小。

注意这里的i在循环里面是小于n-1而不是n,这是因为我们不需要考虑最后一个数的跳跃问题。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值