Product - SMUOJ
需要在每组中取一个数,使其和为X,问有多少的方案数。显然,一个数只能由他的因子相乘得到,一个数的因子不会很多,所以每组我们只放入因子,每个因子只放入一次并记录个数,最后暴力搜索一下就出来了。
#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 1e5+7;
const int mod = 2333;
int n,m,k,sum;
set<int>a[N];
map<PII,int>v;
void dfs(int i,int num,int qum){
if(i==n){
if(num==m){
sum+=qum;
return;
}
}
for(auto ed:a[i]){
int xx=num*ed;
dfs(i+1,xx,qum*v[mk(i,ed)]);
}
}
void sovle(){
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>k;
while(k--){
int x;cin>>x;
if(m%x==0) a[i].insert(x);
v[mk(i,x)]++;
}
}
int u=0;
for(auto ed:a[0]){
dfs(1,ed,v[mk(0,ed)]);
}
cout<<sum<<endl;
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0),cout.tie(0);
int t = 1;
//cin>>t;
while (t--){
sovle();
}
return 0;
}
Contest Problem Details - SMUOJ
乍一看是排列组合问题,实际上数据范围允许我们用dp来写。
dpi,j表示前i个位置能组合j大小的方案数。
#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 1e5+7;
const int mod = 998244353;
int n,m,k,sum,u,v;
int dp[55][2550];
void sovle(){
cin>>n>>m>>k;
dp[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=i;j<=min(m*i,k);j++){
for(int w=1;w<=m&&j-w>=0;w++){
dp[i][j]+=dp[i-1][j-w];
dp[i][j]%=mod;
}
//cout<<i<<' '<<j<<" "<<dp[i][j]<<endl;
}
}
int sum=0;
for(int i=1;i<=k;i++){
sum+=dp[n][i];
sum%=mod;
}
cout<<sum<<endl;
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0),cout.tie(0);
int t = 1;
//cin>>t;
while (t--){
sovle();
}
return 0;
}
Ubiquity - SMUOJ
容斥定理,有0有9的序列=所有序列−没有0的序列−没有9的序列+既没有0也没有9的序列
#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
#define ll long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 1e9+7;
int n,m,k;
int a[N];
int qmi(int x,int y){
int res=1;
while(y){
if(y&1) res=(res*x)%mod;
y>>=1;
x=(x*x)%mod;
}return res;
}
void sovle(){
cin>>n;
int sum=0;
sum+=(((qmi(10,n)%mod-qmi(9,n)%mod+mod)%mod-qmi(9,n)%mod+mod)%mod+qmi(8,n)%mod+mod)%mod;
cout<<sum%mod<<endl;
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0),cout.tie(0);
int t = 1;
//cin>>t;
while (t--){
sovle();
}
return 0;
}
FG operation - SMUOJ
这也能dp啊有点玄妙。
每次只对前两个数操作然后插入一个数,并且插入的那个数在0到9之间,那么我们可以定义一个dp为前i个数剩下j的方案数。
状态怎么转移呢?
如果想直接得到剩下为j的方案数会有点麻烦,那么我们不妨用逆向思维,将状态转移方程设为
dp[i][(a[i]+j)%10]+=dp[i-1][j] 是不是很奇妙~.~
#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
#define ll long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 998244353;
int n,m,k;
int a[N];
int dp[N][15];
void sovle(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
dp[1][a[1]%10]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=9;j++){
dp[i][(a[i]+j)%10]+=dp[i-1][j];
dp[i][(a[i]*j)%10]+=dp[i-1][j];
dp[i][(a[i]+j)%10]%=mod;
dp[i][(a[i]*j)%10]%=mod;
}
}
for(int i=0;i<=9;i++){
cout<<dp[n][i]<<endl;
}
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0),cout.tie(0);
int t = 1;
//cin>>t;
while (t--){
sovle();
}
return 0;
}
Left Right Operation - SMUOJ
首先我们要知道,最优解情况下两个操作是不会有相交的。
那么对一个位置,要么被第一个操作覆盖,要么被第二个操作覆盖,要么没有被覆盖。
#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 998244353;
int n,m,k;
int sum1[N],sum2[N],a[N];
int dp1[N],dp2[N];
void sovle(){
cin>>n>>m>>k;
for(int i=1;i<=n;i++) {
cin>>a[i];
sum1[i]=sum1[i-1]+a[i];
}
for(int i=n;i>0;i--){
sum2[i]=sum2[i+1]+a[i];
}
int min1=sum1[n],min2=sum1[n];
for(int i=1;i<=n;i++){
dp1[i]=min(dp1[i-1]+a[i],i*m);
}
for(int i=n;i>0;i--){
dp2[i]=min(dp2[i+1]+a[i],(n-i+1)*k);
}
for(int i=1;i<=n;i++){
min1=min(min1,min(dp1[i-1]+dp2[i+1]+a[i],min(dp1[i]+dp2[i+1],dp1[i-1]+dp2[i])));
}
cout<<min1<<endl;
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0),cout.tie(0);
int t = 1;
//cin>>t;
while (t--){
sovle();
}
return 0;
}