SMU Summer 2024 Contest Round 8

Product - SMUOJ

需要在每组中取一个数,使其和为X,问有多少的方案数。显然,一个数只能由他的因子相乘得到,一个数的因子不会很多,所以每组我们只放入因子,每个因子只放入一次并记录个数,最后暴力搜索一下就出来了。

#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 1e5+7;
const int mod = 2333;
int n,m,k,sum;
set<int>a[N];
map<PII,int>v;

void dfs(int i,int num,int qum){
    if(i==n){
        if(num==m){
            sum+=qum;
            return;
        }
    }
    for(auto ed:a[i]){
        int xx=num*ed;
        dfs(i+1,xx,qum*v[mk(i,ed)]);
    }
}

void sovle(){
    cin>>n>>m;
    for(int i=0;i<n;i++){
        cin>>k;
        while(k--){
            int x;cin>>x;
            if(m%x==0) a[i].insert(x);
            v[mk(i,x)]++;
        }
    }
    int u=0;
    for(auto ed:a[0]){
        dfs(1,ed,v[mk(0,ed)]);
    }
    cout<<sum<<endl;
}

signed main()
{	
    ios::sync_with_stdio(false), cin.tie(0),cout.tie(0); 
    int t = 1;
    //cin>>t;
    while (t--){
        sovle();
    }

    return 0;
}

Contest Problem Details - SMUOJ

乍一看是排列组合问题,实际上数据范围允许我们用dp来写。

dpi,j表示前i个位置能组合j大小的方案数。

#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 1e5+7;
const int mod = 998244353;
int n,m,k,sum,u,v;
int dp[55][2550];


void sovle(){
    cin>>n>>m>>k;
    dp[0][0]=1;
    for(int i=1;i<=n;i++){
        for(int j=i;j<=min(m*i,k);j++){
            for(int w=1;w<=m&&j-w>=0;w++){
                dp[i][j]+=dp[i-1][j-w];
                dp[i][j]%=mod;
            }
            //cout<<i<<' '<<j<<" "<<dp[i][j]<<endl; 
        }
    }
    int sum=0;
    for(int i=1;i<=k;i++){
        sum+=dp[n][i];
        sum%=mod;
    }
    cout<<sum<<endl;
}

signed main()
{	
    ios::sync_with_stdio(false), cin.tie(0),cout.tie(0); 
    int t = 1;
    //cin>>t;
    while (t--){
        sovle();
    }

    return 0;
}

Ubiquity - SMUOJ

容斥定理,有0有9的序列=所有序列−没有0的序列−没有9的序列+既没有0也没有9的序列

#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
#define ll long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 1e9+7;
int n,m,k;
int a[N];

int qmi(int x,int y){
    int res=1;
    while(y){
        if(y&1) res=(res*x)%mod;
        y>>=1;
        x=(x*x)%mod;
    }return res;
}


void sovle(){
    cin>>n;
    int sum=0;
    sum+=(((qmi(10,n)%mod-qmi(9,n)%mod+mod)%mod-qmi(9,n)%mod+mod)%mod+qmi(8,n)%mod+mod)%mod;
    cout<<sum%mod<<endl;
}

signed main()
{	
    ios::sync_with_stdio(false), cin.tie(0),cout.tie(0); 
    int t = 1;
    //cin>>t;
    while (t--){
        sovle();
    }

    return 0;
}

FG operation - SMUOJ

这也能dp啊有点玄妙。

 每次只对前两个数操作然后插入一个数,并且插入的那个数在0到9之间,那么我们可以定义一个dp为前i个数剩下j的方案数。

状态怎么转移呢?

如果想直接得到剩下为j的方案数会有点麻烦,那么我们不妨用逆向思维,将状态转移方程设为

dp[i][(a[i]+j)%10]+=dp[i-1][j] 是不是很奇妙~.~

#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
#define ll long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 998244353;
int n,m,k;
int a[N];
int dp[N][15];


void sovle(){
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    dp[1][a[1]%10]=1;
    for(int i=2;i<=n;i++){
        for(int j=0;j<=9;j++){
            dp[i][(a[i]+j)%10]+=dp[i-1][j];
            dp[i][(a[i]*j)%10]+=dp[i-1][j];
            dp[i][(a[i]+j)%10]%=mod;
            dp[i][(a[i]*j)%10]%=mod;
        }
    }
    for(int i=0;i<=9;i++){
        cout<<dp[n][i]<<endl;
    }
}

signed main()
{	
    ios::sync_with_stdio(false), cin.tie(0),cout.tie(0); 
    int t = 1;
    //cin>>t;
    while (t--){
        sovle();
    }

    return 0;
}

Left Right Operation - SMUOJ

首先我们要知道,最优解情况下两个操作是不会有相交的。

那么对一个位置,要么被第一个操作覆盖,要么被第二个操作覆盖,要么没有被覆盖。

#include<bits/stdc++.h>
#define endl '\n'
#define mk make_pair
#define int long long
using namespace std;
typedef pair<int, int> PII;
const int N = 2e5+7;
const int mod = 998244353;
int n,m,k;
int sum1[N],sum2[N],a[N];
int dp1[N],dp2[N];

void sovle(){

    cin>>n>>m>>k;
    for(int i=1;i<=n;i++) {
        cin>>a[i];
        sum1[i]=sum1[i-1]+a[i];
    }
    for(int i=n;i>0;i--){
        sum2[i]=sum2[i+1]+a[i];
    }
    int min1=sum1[n],min2=sum1[n];
    for(int i=1;i<=n;i++){
        dp1[i]=min(dp1[i-1]+a[i],i*m);
    }
    for(int i=n;i>0;i--){
        dp2[i]=min(dp2[i+1]+a[i],(n-i+1)*k);
    }
    for(int i=1;i<=n;i++){
        min1=min(min1,min(dp1[i-1]+dp2[i+1]+a[i],min(dp1[i]+dp2[i+1],dp1[i-1]+dp2[i])));
    }
    cout<<min1<<endl;
}

signed main()
{	
    ios::sync_with_stdio(false), cin.tie(0),cout.tie(0); 
    int t = 1;
    //cin>>t;
    while (t--){
        sovle();
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值