一、色彩空间类型转换
1、cv2.cvtColor
dst = cv2.cvtColor( src, code [, dstCn] )
式中:
dst 表示输出图像,与原始输入图像具有同样的数据类型和深度。
src 表示原始输入图像。可以是8位无符号图像、16位无符号图像,或者单精度浮点数等。
code 是色彩空间转换码,表4-2展示了其枚举值。
dstCn 是目标图像的通道数。如果参数为默认的 0,则通道数自动通过原始输入图像和 code 得到。
2、HSV色彩表
3、cv2.inRange
dst = cv2.inRange( src, lowerb, upperb )
式中:
dst 表示输出结果,大小和src一致。
src 表示要检查的数组或图像。
lowerb 表示范围下界。
upperb 表示范围上界。 返回值dst 与src 等大小,其值取决于src中对应位置上的值是否处于区间[lowerb,upperb] 内:
如果src值处于该指定区间内,则dst中对应位置上的值为255。 如果src值不处于该指定区间内,则dst中对应位置上的值为0。
确定颜色区域
mask = cv2.inRange(hsv, lower, upper)
二、阈值处理
1、cv2.threshold()
retval, dst = cv2.threshold( src, thresh, maxval, type )
retval 代表返回的阈值。
dst 代表阈值分割结果图像,与原始图像具有相同的大小和类型。
src 代表要进行阈值分割的图像,可以是多通道的,8位或32位浮点型数值。
thresh 代表要设定的阈值。
maxval 代表当type参数为THRESH_BINARY或者THRESH_BINARY_INV类型时,需要设定的最大值。
type 代表阈值分割的类型
二值化阈值处理(cv2.THRESH_BINARY)
所有大于127的像素点会被处理为255。 其余值会被处理为0。
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
import cv2
img=cv2.imread("lena.bmp")
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
cv2.imshow("img",img)
cv2.imshow("rst",rst)
cv2.waitKey()
cv2.destroyAllWindows()
2、cv2.adaptiveThreshold() 自适应阈值处理
dst = cv.adaptiveThreshold( src, maxValue, adaptiveMethod, thresholdType,
blockSize, C )
athdGAUS=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.TH
RESH_BINARY,5,3)
dst 代表自适应阈值处理结果。
src 代表要进行处理的原始图像。需要注意的是,该图像必须是8位单通道的图像。
maxValue 代表最大值。
adaptiveMethod 代表自适应方法。
thresholdType 代表阈值处理方式,该值必须是 cv2.THRESH_BINARY 或者cv2.THRESH_BINARY_INV 中的一个。
blockSize 代表块大小。表示一个像素在计算其阈值时所使用的邻域尺寸,通常为3、5、 7 等。
C是常量。
函数cv2.adaptiveThreshold()根据参数 adaptiveMethod 来确定自适应阈值的计算方法,函数 包含cv2.ADAPTIVE_THRESH_MEAN_C 和 cv2.ADAPTIVE_THRESH_GAUSSIAN_C 两种不 同的方法。这两种方法都是逐个像素地计算自适应阈值,自适应阈值等于每个像素由参数 blockSize 所指定邻域的加权平均值减去常量C。两种不同的方法在计算邻域的加权平均值时所 采用的方式不同: cv2.ADAPTIVE_THRESH_MEAN_C:邻域所有像素点的权重值是一致的。 cv2.ADAPTIVE_THRESH_GAUSSIAN_C:与邻域各个像素点到中心点的距离有关,通过高斯方程得到各个点的权重值。
三、图像平滑处理
1、均值滤波cv2.blur()
dst = cv2.blur( src, ksize, anchor, borderType )
r=cv2.blur(o,(5,5))
2、方框滤波cv2.boxFilter()
dst = cv2.boxFilter( src, ddepth, ksize, anchor, normalize, borderType )
r=cv2.boxFilter(o,-1,(5,5))
3、高斯滤波cv2.GaussianBlur()
dst = cv2.GaussianBlur( src, ksize, sigmaX, sigmaY, borderType )
import cv2
o=cv2.imread("image\\lenaNoise.png")
r=cv2.GaussianBlur(o,(5,5),0,0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()
4、中值滤波cv2.medianBlur()
dst = cv2.medianBlur( src, ksize)
r=cv2.medianBlur(o,3)
5、双边滤波cv2.bilateralFilter()
dst = cv2.bilateralFilter( src, d, sigmaColor, sigmaSpace, borderType )
import cv2
o=cv2.imread("image\\bilTest.bmp")
b=cv2.bilateralFilter(o,5,100,100)
cv2.imshow("original",o)
cv2.imshow("bilateral",b)
cv2.waitKey()
cv2.destroyAllWindows()
四、形态学操作
dst = cv2.morphologyEx( src, op, kernel[, anchor[, iterations[, borderType[,
borderValue]]]]] )
开运算
import cv2
import numpy as np
img = cv2.imread("opening.bmp")
kernal = np.ones((3,3),np.uint8)
mask = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=3)
cv2.imshow("mask", mask)
cv2.waitKey()
cv2.destroyAllWindows()
闭运算
import cv2
import numpy as np
img=cv2.imread("closing.bmp")
kernal=np.ones((10,10),np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=3)
cv2.imshow("img",img)
cv2.imshow("mask",mask)
cv2.waitKey()
cv2.destroyAllWindows()
五、Canny 边缘检测 cv2.Canny()
edges = cv.Canny( image, threshold1, threshold2[, apertureSize[, L2gradient]])
import cv2
o=cv2.imread("lena.bmp",cv2.IMREAD_GRAYSCALE)
r1=cv2.Canny(o,128,200)
r2=cv2.Canny(o,32,128)
cv2.imshow("original",o)
cv2.imshow("result1",r1)
cv2.imshow("result2",r2)
cv2.waitKey()
cv2.destroyAllWindows()
六、图像轮廓
1、cv2.findContours()
image, contours, hierarchy = cv2.findContours( image, mode, method)
image,contours, hierarchy = cv2.findContours(binary,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
2、cv2.drawContours()
image=cv2.drawContours(
image,
contours,
contourIdx,
color[,
thickness[,
lineType[,
hierarchy[,
maxLevel[,
offset]]]]] )
mask=cv2.drawContours(mask,contours,-1,(255,255,255),-1)
3、矩特征
(1)矩的计算:moments函数
retval = cv2.moments( array[, binaryImage] )
在OpenCV中,函数cv2.moments()会同时计算上述空间矩、中心矩和归一化中心距。
import cv2
import numpy as np
o = cv2.imread('moments.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
image,contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
n=len(contours)
contoursImg=[]
for i in range(n):
temp=np.zeros(image.shape,np.uint8)
contoursImg.append(temp)
contoursImg[i]=cv2.drawContours(contoursImg[i],contours,i,255,3)
cv2.imshow("contours[" + str(i)+"]",contoursImg[i])
print("观察各个轮廓的矩(moments):")
for i in range(n):
print("轮廓"+str(i)+"的矩:\n",cv2.moments(contours[i]))
print("观察各个轮廓的面积:")
for i in range(n):
print("轮廓"+str(i)+"的面积:%d" %cv2.moments(contours[i])['m00'])
cv2.waitKey()
cv2.destroyAllWindows()
M = cv2.moments(largest_contour)
if M['m00'] != 0:
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
(2)计算轮廓的面积:contourArea函数
retval =cv2.contourArea(contour [, oriented] ))
import cv2
import numpy as np
o = cv2.imread('contours.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
image,contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("original",o)
n=len(contours)
contoursImg=[]
for i in range(n):
print("contours["+str(i)+"]面积=",cv2.contourArea(contours[i]))
temp=np.zeros(o.shape,np.uint8)
contoursImg.append(temp)
contoursImg[i]=cv2.drawContours(contoursImg[i], contours, i, (255,255,255), 3)
cv2.imshow("contours[" + str(i)+"]",contoursImg[i])
cv2.waitKey()
cv2.destroyAllWindows()
(3)计算轮廓的长度:arcLength函数
retval = cv2.arcLength( curve, closed )
七、角点检测
Shi-Tomasi角点检测
cv2.goodFeaturesToTrack(img,
corners,
maxCorners,
qualityLevel,
minDistance,
mask,
blockSize,
gradientSize,
useHarrisDetector=False,
k=0.04
)
import cv2
import numpy as np
# Shi-Tomasi角点检测部分
# 图像预处理
img = cv2.imread('Example4.png', flags=cv2.IMREAD_GRAYSCALE)
img_bgr = cv2.imread('Example.jpg')
img = cv2.resize(img, None, fx=0.5, fy=0.5)
img_bgr = cv2.resize(img_bgr, None, fx=0.5, fy=0.5)
kernel = np.ones((3,3), dtype=np.uint8)
img_open = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=3)
img_close = cv2.morphologyEx(img_open, cv2.MORPH_CLOSE, kernel, iterations=10)
img_erode = cv2.morphologyEx(img_close, cv2.MORPH_ERODE, kernel, iterations=4)
img_blur = cv2.medianBlur(img_erode, 39)
cv2.imshow('blur', img_blur)
# shi-tomasi角点检测
corners = cv2.goodFeaturesToTrack(img_blur, 4, 0.01, 300)
print(corners)
# 显示角点
for i in corners:
x,y = i.ravel()
cv2.circle(img_bgr,(int(x),int(y)),5,(0,0,255),-1)
cv2.imshow('dst', img_bgr)
cv2.waitKey(0)
cv2.destroyAllWindows()
八、霍夫变换
1、霍夫直线变换 cv2.HoughLines()
lines=cv2.HoughLines(image, rho, theta, threshold)
概率霍夫变换cv2.HoughLinesP()
lines =cv2.HoughLinesP(image, rho, theta, threshold, minLineLength, maxLineGap)
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('computer.jpg',-1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize =3)
orgb=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
oShow=orgb.copy()
lines = cv2.HoughLinesP(edges,1,np.pi/180,1,minLineLength=100,maxLineGap=10)
for line in lines:
x1,y1,x2,y2 = line[0]
cv2.line(orgb,(x1,y1),(x2,y2),(255,0,0),5)
plt.subplot(121)
plt.imshow(oShow)
plt.axis('off')
plt.subplot(122)
plt.imshow(orgb)
plt.axis('off')
2、霍夫圆环变换 cv2.HoughCircles()
circles=cv2.HoughCircles(image,
method,
dp,
minDist,
param1,
param2,
minRadius,
maxRadius)
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('chess.jpg',0)
imgo=cv2.imread('chess.jpg',-1)
o=cv2.cvtColor(imgo,cv2.COLOR_BGR2RGB)
oshow=o.copy()
img = cv2.medianBlur(img,5)
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,300,
param1=50,param2=30,minRadius=100,maxRadius=200)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
cv2.circle(o,(i[0],i[1]),i[2],(255,0,0),12)
cv2.circle(o,(i[0],i[1]),2,(255,0,0),12)
plt.subplot(121)
plt.imshow(oshow)
plt.axis('off')
plt.subplot(122)
plt.imshow(o)
plt.axis('off')
九、视频处理
VideoCapture 类
cap = cv2.VideoCapture(0)
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
while(cap.isOpened()):
ret, frame = cap.read()
cv2.imshow('frame',frame)
c = cv2.waitKey(1)
if c==27: #ESC 键
break
cap.release()
cv2.destroyAllWindows()
播放视频文件
import numpy as np
import cv2
cap = cv2.VideoCapture('viptrain.avi')
while(cap.isOpened()):
ret, frame = cap.read()
cv2.imshow('frame',frame)
c = cv2.waitKey(25)
if c==27: #ESC 键
break
cap.release()
cv2.destroyAllWindows()