超参数调整专题1
知识点回顾
- 网格搜索
- 随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)
- 贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)
- time库的计时模块,方便后人查看代码运行时长。
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('data.csv') #读取数据
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 划分训练集、验证集和测试集,因为需要考2次
# 这里演示一下如何2次划分数据集,因为这个函数只能划分一次,所以需要调用两次才能划分出训练集、验证集和测试集。
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:1:1划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%临时集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) # 50%验证集,50%测试集
# X_train, y_train (80%)
# X_val, y_val (10%)
# X_test, y_test (10%)
print("Data shapes:")
print("X_train:", X_train.shape)
print("y_train:", y_train.shape)
print("X_val:", X_val.shape)
print("y_val:", y_val.shape)
print("X_test:", X_test.shape)
print("y_test:", y_test.shape)
Data shapes:
X_train: (6000, 31)
y_train: (6000,)
X_val: (750, 31)
y_val: (750,)
X_test: (750, 31)
y_test: (750,)
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# 简单的调参方法
1. 随机搜索 : 在参数空间中随机选择参数组合,然后使用交叉验证来评估每个组合的性能:
2. 网格搜索
3. 贝叶斯优化
- 基线模型(基准模型): 首先运行一个使用默认参数的 RandomForestClassifier,记录其性能作为比较的基准。
1. 网格搜索 (GridSearchCV):
- 需要定义参数的网格(param_grid),包含所有你想要尝试的特定值的列表。它会尝试网格中所有可能的参数组合。
- 缺点: 计算成本非常高,参数和值的数量稍多,组合数就会呈指数级增长(维度灾难)。因此,网格通常设置得比较小或集中在认为最优参数可能存在的区域(可能基于随机搜索的初步结果)。
2. 随机搜索 (RandomizedSearchCV):
- 需要定义参数的分布,而不是固定的列表。这是它与网格搜索的主要区别,它不会尝试所有组合,而是在指定次数内随机采样。通常,用相对较少的迭代次数(如 50-100)就能找到相当好的参数。
- 对于给定的计算预算,随机搜索通常比网格搜索更有效,尤其是在高维参数空间中。
3. 贝叶斯优化 (BayesSearchCV from skopt):
- 需要定义参数的搜索空间,与随机搜索类似,当搜索空间非常大时,它通常比网格搜索和随机搜索更有效。
- 核心优势: 它不是随机选择下一个点,而是根据先前评估的结果建立一个概率模型(通常是高斯过程),预测哪些参数组合可能产生更好的结果,并据此选择下一个评估点。这使得它在寻找最优解方面通常比随机搜索更高效(用更少的迭代次数达到相似或更好的性能),特别是当模型训练(单次评估)非常耗时的时候。
正常情况下,计算资源够用网格,计算资源不够用贝叶斯优化。随机搜索没什么人用
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 0.9972 秒
默认随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.77 0.97 0.86 1059
1 0.79 0.30 0.43 441
accuracy 0.77 1500
macro avg 0.78 0.63 0.64 1500
weighted avg 0.77 0.77 0.73 1500
默认随机森林 在测试集上的混淆矩阵:
[[1023 36]
[ 309 132]]
# --- 2. 网格搜索优化随机森林 ---
print("\n--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---")
from sklearn.model_selection import GridSearchCV
# 定义要搜索的参数网格
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
# 创建网格搜索对象
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), # 随机森林分类器
param_grid=param_grid, # 参数网格
cv=5, # 5折交叉验证
n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time()
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time()
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---
网格搜索耗时: 56.7938 秒
最佳参数: {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}
网格搜索优化后的随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.97 0.86 1059
1 0.80 0.28 0.42 441
accuracy 0.77 1500
macro avg 0.78 0.63 0.64 1500
weighted avg 0.77 0.77 0.73 1500
网格搜索优化后的随机森林 在测试集上的混淆矩阵:
[[1028 31]
[ 317 124]]
# --- 2. 贝叶斯优化随机森林 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from skopt import BayesSearchCV
from skopt.space import Integer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import time
# 定义要搜索的参数空间
search_space = {
'n_estimators': Integer(50, 200),
'max_depth': Integer(10, 30),
'min_samples_split': Integer(2, 10),
'min_samples_leaf': Integer(1, 4)
}
# 创建贝叶斯优化搜索对象
bayes_search = BayesSearchCV(
estimator=RandomForestClassifier(random_state=42),
search_spaces=search_space,
n_iter=32, # 迭代次数,可根据需要调整
cv=5, # 5折交叉验证,这个参数是必须的,不能设置为1,否则就是在训练集上做预测了
n_jobs=-1,
scoring='accuracy'
)
start_time = time.time()
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train)
end_time = time.time()
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", bayes_search.best_params_)
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_
best_pred = best_model.predict(X_test)
print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---
贝叶斯优化耗时: 43.6849 秒
最佳参数: OrderedDict([('max_depth', 21), ('min_samples_leaf', 3), ('min_samples_split', 4), ('n_estimators', 85)])
贝叶斯优化后的随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.97 0.85 1059
1 0.78 0.27 0.40 441
accuracy 0.76 1500
macro avg 0.77 0.62 0.63 1500
weighted avg 0.77 0.76 0.72 1500
贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[1026 33]
[ 321 120]]
# --- 2. 贝叶斯优化随机森林 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report, confusion_matrix
import time
import numpy as np
# 假设 X_train, y_train, X_test, y_test 已经定义好
# 定义目标函数,这里使用交叉验证来评估模型性能
def rf_eval(n_estimators, max_depth, min_samples_split, min_samples_leaf):
n_estimators = int(n_estimators)
max_depth = int(max_depth)
min_samples_split = int(min_samples_split)
min_samples_leaf = int(min_samples_leaf)
model = RandomForestClassifier(
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42
)
scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy')
return np.mean(scores)
# 定义要搜索的参数空间
pbounds_rf = {
'n_estimators': (50, 200),
'max_depth': (10, 30),
'min_samples_split': (2, 10),
'min_samples_leaf': (1, 4)
}
# 创建贝叶斯优化对象,设置 verbose=2 显示详细迭代信息
optimizer_rf = BayesianOptimization(
f=rf_eval, # 目标函数
pbounds=pbounds_rf, # 参数空间
random_state=42, # 随机种子
verbose=2 # 显示详细迭代信息
)
start_time = time.time()
# 开始贝叶斯优化
optimizer_rf.maximize(
init_points=5, # 初始随机采样点数
n_iter=32 # 迭代次数
)
end_time = time.time()
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", optimizer_rf.max['params'])
# 使用最佳参数的模型进行预测
best_params = optimizer_rf.max['params']
best_model = RandomForestClassifier(
n_estimators=int(best_params['n_estimators']),
max_depth=int(best_params['max_depth']),
min_samples_split=int(best_params['min_samples_split']),
min_samples_leaf=int(best_params['min_samples_leaf']),
random_state=42
)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---
| iter | target | max_depth | min_sa... | min_sa... | n_esti... |
-------------------------------------------------------------------------
| 1 | 0.7828 | 17.49 | 3.852 | 7.856 | 139.8 |
| 2 | 0.78 | 13.12 | 1.468 | 2.465 | 179.9 |
| 3 | 0.7817 | 22.02 | 3.124 | 2.165 | 195.5 |
| 4 | 0.7825 | 26.65 | 1.637 | 3.455 | 77.51 |
| 5 | 0.7822 | 16.08 | 2.574 | 5.456 | 93.68 |
| 6 | 0.7803 | 17.93 | 3.082 | 5.915 | 126.9 |
| 7 | 0.7772 | 10.98 | 1.055 | 6.804 | 158.6 |
| 8 | 0.7765 | 10.09 | 1.121 | 5.732 | 102.8 |
| 9 | 0.78 | 29.42 | 3.129 | 9.951 | 106.1 |
| 10 | 0.7822 | 19.43 | 1.481 | 8.416 | 64.48 |
| 11 | 0.783 | 28.77 | 3.119 | 5.601 | 199.8 |
| 12 | 0.7798 | 26.76 | 2.866 | 4.587 | 197.0 |
| 13 | 0.78 | 13.87 | 2.864 | 3.986 | 165.2 |
| 14 | 0.7782 | 10.13 | 2.378 | 9.813 | 129.0 |
| 15 | 0.7787 | 24.85 | 2.575 | 4.403 | 52.95 |
| 16 | 0.78 | 27.74 | 2.593 | 4.055 | 129.7 |
| 17 | 0.7805 | 14.12 | 3.91 | 2.115 | 60.42 |
| 18 | 0.7827 | 18.97 | 1.264 | 2.414 | 175.5 |
| 19 | 0.7765 | 11.66 | 3.395 | 9.376 | 195.7 |
| 20 | 0.7793 | 17.29 | 1.86 | 7.538 | 150.1 |
| 21 | 0.7822 | 19.36 | 1.97 | 8.328 | 64.46 |
| 22 | 0.781 | 29.96 | 3.562 | 7.921 | 199.0 |
| 23 | 0.7808 | 18.14 | 2.653 | 5.696 | 138.2 |
| 24 | 0.7818 | 15.49 | 3.068 | 9.806 | 140.5 |
| 25 | 0.781 | 19.36 | 3.244 | 9.495 | 141.0 |
| 26 | 0.7808 | 21.09 | 2.187 | 4.491 | 174.4 |
| 27 | 0.7795 | 14.4 | 3.276 | 6.276 | 141.1 |
| 28 | 0.7813 | 16.64 | 2.866 | 2.51 | 175.8 |
| 29 | 0.7793 | 28.99 | 1.05 | 4.297 | 199.6 |
| 30 | 0.7837 | 17.5 | 2.553 | 8.927 | 138.6 |
| 31 | 0.7795 | 16.56 | 3.761 | 9.857 | 137.2 |
| 32 | 0.7793 | 17.35 | 1.551 | 8.439 | 138.9 |
| 33 | 0.7798 | 17.38 | 3.878 | 8.473 | 139.3 |
| 34 | 0.779 | 24.33 | 1.157 | 5.795 | 76.37 |
| 35 | 0.7825 | 26.71 | 1.621 | 3.293 | 77.47 |
| 36 | 0.7825 | 29.04 | 3.905 | 5.19 | 199.9 |
| 37 | 0.7825 | 18.26 | 2.861 | 9.151 | 138.7 |
=========================================================================
贝叶斯优化耗时: 197.6048 秒
最佳参数: {'max_depth': 17.502236740620297, 'min_samples_leaf': 2.5533082077180316, 'min_samples_split': 8.926771812562555, 'n_estimators': 138.5566475443472}
贝叶斯优化后的随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.98 0.86 1059
1 0.83 0.26 0.40 441
accuracy 0.77 1500
macro avg 0.79 0.62 0.63 1500
weighted avg 0.78 0.77 0.72 1500
贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[1035 24]
[ 325 116]]