Python训练营打卡Day11(2025.4.30)

超参数调整专题1

知识点回顾

  1. 网格搜索
  2. 随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)
  3. 贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)
  4. time库的计时模块,方便后人查看代码运行时长。
import pandas as pd
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据

# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 划分训练集、验证集和测试集,因为需要考2次
# 这里演示一下如何2次划分数据集,因为这个函数只能划分一次,所以需要调用两次才能划分出训练集、验证集和测试集。
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default']  # 标签
# 按照8:1:1划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%临时集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)  # 50%验证集,50%测试集
# X_train, y_train (80%)
# X_val, y_val (10%)
# X_test, y_test (10%)

print("Data shapes:")
print("X_train:", X_train.shape)
print("y_train:", y_train.shape)
print("X_val:", X_val.shape)
print("y_val:", y_val.shape)
print("X_test:", X_test.shape)
print("y_test:", y_test.shape)



Data shapes:
X_train: (6000, 31)
y_train: (6000,)
X_val: (750, 31)
y_val: (750,)
X_test: (750, 31)
y_test: (750,)
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集

from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息

# 简单的调参方法

1. 随机搜索 : 在参数空间中随机选择参数组合,然后使用交叉验证来评估每个组合的性能:

2. 网格搜索

3. 贝叶斯优化

- 基线模型(基准模型): 首先运行一个使用默认参数的 RandomForestClassifier,记录其性能作为比较的基准。

1. 网格搜索 (GridSearchCV):

- 需要定义参数的网格(param_grid),包含所有你想要尝试的特定值的列表。它会尝试网格中所有可能的参数组合。

- 缺点: 计算成本非常高,参数和值的数量稍多,组合数就会呈指数级增长(维度灾难)。因此,网格通常设置得比较小或集中在认为最优参数可能存在的区域(可能基于随机搜索的初步结果)。

2. 随机搜索 (RandomizedSearchCV):

- 需要定义参数的分布,而不是固定的列表。这是它与网格搜索的主要区别,它不会尝试所有组合,而是在指定次数内随机采样。通常,用相对较少的迭代次数(如 50-100)就能找到相当好的参数。

- 对于给定的计算预算,随机搜索通常比网格搜索更有效,尤其是在高维参数空间中。

3. 贝叶斯优化 (BayesSearchCV from skopt):

- 需要定义参数的搜索空间,与随机搜索类似,当搜索空间非常大时,它通常比网格搜索和随机搜索更有效。

- 核心优势: 它不是随机选择下一个点,而是根据先前评估的结果建立一个概率模型(通常是高斯过程),预测哪些参数组合可能产生更好的结果,并据此选择下一个评估点。这使得它在寻找最优解方面通常比随机搜索更高效(用更少的迭代次数达到相似或更好的性能),特别是当模型训练(单次评估)非常耗时的时候。

正常情况下,计算资源够用网格,计算资源不够用贝叶斯优化。随机搜索没什么人用

# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))



--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 0.9972 秒

默认随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.77      0.97      0.86      1059
           1       0.79      0.30      0.43       441

    accuracy                           0.77      1500
   macro avg       0.78      0.63      0.64      1500
weighted avg       0.77      0.77      0.73      1500

默认随机森林 在测试集上的混淆矩阵:
[[1023   36]
 [ 309  132]]
# --- 2. 网格搜索优化随机森林 ---
print("\n--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---")
from sklearn.model_selection import GridSearchCV

# 定义要搜索的参数网格
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

# 创建网格搜索对象
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), # 随机森林分类器
                           param_grid=param_grid, # 参数网格
                           cv=5, # 5折交叉验证
                           n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
                           scoring='accuracy') # 使用准确率作为评分标准

start_time = time.time()
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time()

print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合

# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测

print("\n网格搜索优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))




--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---
网格搜索耗时: 56.7938 秒
最佳参数:  {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}

网格搜索优化后的随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.97      0.86      1059
           1       0.80      0.28      0.42       441

    accuracy                           0.77      1500
   macro avg       0.78      0.63      0.64      1500
weighted avg       0.77      0.77      0.73      1500

网格搜索优化后的随机森林 在测试集上的混淆矩阵:
[[1028   31]
 [ 317  124]]
# --- 2. 贝叶斯优化随机森林 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from skopt import BayesSearchCV
from skopt.space import Integer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import time

# 定义要搜索的参数空间
search_space = {
    'n_estimators': Integer(50, 200),
    'max_depth': Integer(10, 30),
    'min_samples_split': Integer(2, 10),
    'min_samples_leaf': Integer(1, 4)
}

# 创建贝叶斯优化搜索对象
bayes_search = BayesSearchCV(
    estimator=RandomForestClassifier(random_state=42),
    search_spaces=search_space,
    n_iter=32,  # 迭代次数,可根据需要调整
    cv=5, # 5折交叉验证,这个参数是必须的,不能设置为1,否则就是在训练集上做预测了
    n_jobs=-1,
    scoring='accuracy'
)

start_time = time.time()
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train)
end_time = time.time()

print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", bayes_search.best_params_)

# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_
best_pred = best_model.predict(X_test)

print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))




--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---
贝叶斯优化耗时: 43.6849 秒
最佳参数:  OrderedDict([('max_depth', 21), ('min_samples_leaf', 3), ('min_samples_split', 4), ('n_estimators', 85)])

贝叶斯优化后的随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.97      0.85      1059
           1       0.78      0.27      0.40       441

    accuracy                           0.76      1500
   macro avg       0.77      0.62      0.63      1500
weighted avg       0.77      0.76      0.72      1500

贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[1026   33]
 [ 321  120]]

# --- 2. 贝叶斯优化随机森林 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report, confusion_matrix
import time
import numpy as np

# 假设 X_train, y_train, X_test, y_test 已经定义好
# 定义目标函数,这里使用交叉验证来评估模型性能
def rf_eval(n_estimators, max_depth, min_samples_split, min_samples_leaf):
    n_estimators = int(n_estimators)
    max_depth = int(max_depth)
    min_samples_split = int(min_samples_split)
    min_samples_leaf = int(min_samples_leaf)
    model = RandomForestClassifier(
        n_estimators=n_estimators,
        max_depth=max_depth,
        min_samples_split=min_samples_split,
        min_samples_leaf=min_samples_leaf,
        random_state=42
    )
    scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy')
    return np.mean(scores)

# 定义要搜索的参数空间
pbounds_rf = {
    'n_estimators': (50, 200),
   'max_depth': (10, 30),
   'min_samples_split': (2, 10),
   'min_samples_leaf': (1, 4)
}

# 创建贝叶斯优化对象,设置 verbose=2 显示详细迭代信息
optimizer_rf = BayesianOptimization(
    f=rf_eval, # 目标函数
    pbounds=pbounds_rf, # 参数空间
    random_state=42, # 随机种子
    verbose=2  # 显示详细迭代信息
)

start_time = time.time()
# 开始贝叶斯优化
optimizer_rf.maximize(
    init_points=5,  # 初始随机采样点数
    n_iter=32  # 迭代次数
)
end_time = time.time()

print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", optimizer_rf.max['params'])

# 使用最佳参数的模型进行预测
best_params = optimizer_rf.max['params']
best_model = RandomForestClassifier(
    n_estimators=int(best_params['n_estimators']),
    max_depth=int(best_params['max_depth']),
    min_samples_split=int(best_params['min_samples_split']),
    min_samples_leaf=int(best_params['min_samples_leaf']),
    random_state=42
)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)

print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))




--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---
|   iter    |  target   | max_depth | min_sa... | min_sa... | n_esti... |
-------------------------------------------------------------------------
| 1         | 0.7828    | 17.49     | 3.852     | 7.856     | 139.8     |
| 2         | 0.78      | 13.12     | 1.468     | 2.465     | 179.9     |
| 3         | 0.7817    | 22.02     | 3.124     | 2.165     | 195.5     |
| 4         | 0.7825    | 26.65     | 1.637     | 3.455     | 77.51     |
| 5         | 0.7822    | 16.08     | 2.574     | 5.456     | 93.68     |
| 6         | 0.7803    | 17.93     | 3.082     | 5.915     | 126.9     |
| 7         | 0.7772    | 10.98     | 1.055     | 6.804     | 158.6     |
| 8         | 0.7765    | 10.09     | 1.121     | 5.732     | 102.8     |
| 9         | 0.78      | 29.42     | 3.129     | 9.951     | 106.1     |
| 10        | 0.7822    | 19.43     | 1.481     | 8.416     | 64.48     |
| 11        | 0.783     | 28.77     | 3.119     | 5.601     | 199.8     |
| 12        | 0.7798    | 26.76     | 2.866     | 4.587     | 197.0     |
| 13        | 0.78      | 13.87     | 2.864     | 3.986     | 165.2     |
| 14        | 0.7782    | 10.13     | 2.378     | 9.813     | 129.0     |
| 15        | 0.7787    | 24.85     | 2.575     | 4.403     | 52.95     |
| 16        | 0.78      | 27.74     | 2.593     | 4.055     | 129.7     |
| 17        | 0.7805    | 14.12     | 3.91      | 2.115     | 60.42     |
| 18        | 0.7827    | 18.97     | 1.264     | 2.414     | 175.5     |
| 19        | 0.7765    | 11.66     | 3.395     | 9.376     | 195.7     |
| 20        | 0.7793    | 17.29     | 1.86      | 7.538     | 150.1     |
| 21        | 0.7822    | 19.36     | 1.97      | 8.328     | 64.46     |
| 22        | 0.781     | 29.96     | 3.562     | 7.921     | 199.0     |
| 23        | 0.7808    | 18.14     | 2.653     | 5.696     | 138.2     |
| 24        | 0.7818    | 15.49     | 3.068     | 9.806     | 140.5     |
| 25        | 0.781     | 19.36     | 3.244     | 9.495     | 141.0     |
| 26        | 0.7808    | 21.09     | 2.187     | 4.491     | 174.4     |
| 27        | 0.7795    | 14.4      | 3.276     | 6.276     | 141.1     |
| 28        | 0.7813    | 16.64     | 2.866     | 2.51      | 175.8     |
| 29        | 0.7793    | 28.99     | 1.05      | 4.297     | 199.6     |
| 30        | 0.7837    | 17.5      | 2.553     | 8.927     | 138.6     |
| 31        | 0.7795    | 16.56     | 3.761     | 9.857     | 137.2     |
| 32        | 0.7793    | 17.35     | 1.551     | 8.439     | 138.9     |
| 33        | 0.7798    | 17.38     | 3.878     | 8.473     | 139.3     |
| 34        | 0.779     | 24.33     | 1.157     | 5.795     | 76.37     |
| 35        | 0.7825    | 26.71     | 1.621     | 3.293     | 77.47     |
| 36        | 0.7825    | 29.04     | 3.905     | 5.19      | 199.9     |
| 37        | 0.7825    | 18.26     | 2.861     | 9.151     | 138.7     |
=========================================================================
贝叶斯优化耗时: 197.6048 秒
最佳参数:  {'max_depth': 17.502236740620297, 'min_samples_leaf': 2.5533082077180316, 'min_samples_split': 8.926771812562555, 'n_estimators': 138.5566475443472}

贝叶斯优化后的随机森林 在测试集上的分类报告:
              precision    recall  f1-score   support

           0       0.76      0.98      0.86      1059
           1       0.83      0.26      0.40       441

    accuracy                           0.77      1500
   macro avg       0.79      0.62      0.63      1500
weighted avg       0.78      0.77      0.72      1500

贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[1035   24]
 [ 325  116]]

 @浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值