问题 U: 0/1背包

题目描述

       一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。

输入

w第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30);

w   第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

输出

仅一行,一个数,表示最大总价值。

样例输入 Copy
10 4
2 1
3 3
4 5
7 9
样例输出 Copy
12

关于背包我也有一些自己想说的,背包问题的核心其实就是表达式,只要把表达式写出来程序的编译成功也就不是什么问题,所以我们一起来解读一下max(f[i-1[[j],f[i-1][j-w[i]+v[i])

其实我们需要做的就是将这一个大问题拆分成很多小问题,f[i][j]表示的是取前i件物品用j容量能放的最大价值,那么每一次计算这个的时候就是通过考虑加这件物品,第一他是否能添加,如果能添加成功就需要比较不添加这件物品不占用这些重量来的价值大还是加了这件物品加上去掉这些重量的物品的价值

#include<iostream>
#include<cmath>
using namespace std;
const int MAXN = 1000;
int w[MAXN];
int v[MAXN];
int f[MAXN][MAXN];
int max(int a, int b)
{
    if (a > b)
    {
        return a;
    }
    else
    {
        return b;
    }
}
int main()
{
    int m, n;
    f[0][0] = 0;
    cin >> m >> n;
    for (int i = 1; i <= n; i++)
    {
        cin >> w[i] >> v[i];
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            if (w[i] > j)
            {
                f[i][j] = f[i - 1][j];
            }
            else
            {
                f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
            }
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答你关于分支定界法的问题。首先,让我们来看看0/1背包问题。 0/1背包问题是指有一个固定大小的背包,以及一些物品,每个物品都有自己的价值和重量。要求选择一些物品,使得在满足背包最大重量限制的前提下,所选物品的总价值最大。 使用分支定界法来解决0/1背包问题的基本思路是: 1. 将物品按照单位重量的价值从大到小排序。 2. 构造一个节点,记录当前已经选择的物品,以及当前背包中物品的重量和价值。 3. 对于每个节点,计算该节点的上界(即当前已经选择的物品的价值加上剩余物品按照单位重量价值从大到小排序所能得到的最大价值)。 4. 将节点按照上界从大到小排序,选择上界最大的节点进行分支。分支的方式是选择当前节点未选择的下一个物品,然后分别构造两个新节点,一个是选择该物品放入背包的节点,另一个是不选择该物品放入背包的节点。 5. 对于新生成的节点,重复步骤3和4,直到找到最优解或者所有节点的上界都小于当前已知的最优解。 在Python中实现0/1背包问题的分支定界法可以参考以下代码: ```python class Node: def __init__(self, level, weight, value, selected): self.level = level self.weight = weight self.value = value self.selected = selected self.bound = 0.0 def bound(node, capacity, weight, value, n): if node.weight >= capacity: return 0.0 else: result = node.value j = node.level + 1 total_weight = node.weight while j < n and total_weight + weight[j] <= capacity: result += value[j] total_weight += weight[j] j += 1 if j < n: result += (capacity - total_weight) * (value[j] / weight[j]) return result def knapsack_branch_bound(capacity, weight, value, n): items = [(value[i] / weight[i], weight[i], value[i]) for i in range(n)] items.sort(reverse=True) queue = [] v = 0.0 u = Node(-1, 0, 0, []) u.bound = bound(u, capacity, weight, value, n) queue.append(u) while queue: u = queue.pop(0) if u.bound > v: if u.level == n - 1: v = u.value selected_items = u.selected else: level = u.level + 1 weight1 = u.weight + weight[level] value1 = u.value + value[level] selected1 = u.selected + [level] node1 = Node(level, weight1, value1, selected1) node1.bound = bound(node1, capacity, weight, value, n) if node1.bound > v: queue.append(node1) weight2 = u.weight value2 = u.value selected2 = u.selected node2 = Node(level, weight2, value2, selected2) node2.bound = bound(node2, capacity, weight, value, n) if node2.bound > v: queue.append(node2) return v, selected_items ``` 在这个代码中,我们定义了一个Node类来存储节点的信息,包括节点的层数、当前背包中物品的重量和价值、已经选择的物品等。我们还定义了一个bound函数来计算节点的上界。在主函数中,我们首先将物品按照单位重量的价值从大到小排序,然后构造一个初始节点,将其加入队列中。接着,我们不断从队列中取出上界最大的节点进行分支,直到找到最优解或者队列为空。最后,返回最优解的价值和已选择的物品编号。 希望这个答案能够帮助到你。如果你还有其他的问题,请随时问我!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值