1.项目简介:
该项目是通过调用百度API,在窗体应用上实现人脸对照识别,照片取样等复杂功能,其中运用到了网络连接、文件处理、图像处理、数据库管理及音视频处理等技术。(该博客内容讲述具体调用方法和程序大体框架)
2.技术资源:
编程环境:VS2022
编程语言:C#
外部资源和库包:网络连接:HttpClient
文件处理:System.IO
图像处理:OpenCvSharp, System.Drawing
数据库:SQLite, Dapper
音视频处理:NAudio, FFmpeg
百度AI SDK:百度人脸识别API
库:aforg库
3.具体操作步骤
首先实现对百度API的连接
(1)可通过百度浏览器搜索百度API,进入官网
(2)在官网的产品中找到我们所需的人脸实名认证,里面的有免费的资源包供我们目前所需开发
(3)点击立即使用
(4) 点击后的界面会出现领取免费资源,领取免费资源需要进行认证,认证有企业认证和个人认证,可根据自己具体情况认证
(5)创建应用,创建的应用会有对应APPID、API Key和Secret Key,ID和两个Key码是用于我们在C#程序中实现连接
(6)在应用列表查看人脸库,可以创建人脸库资源
(7)创建用户组和用户,并添加用户照片
4.在开发环境中代码实现
(1)打开vs2022,创建窗体应用并配置项目的依赖库。使用NuGet包管理器添加所需的库,如HttpClient、OpenCvSharp、SQLite、Dapper、NAudio和FFmpeg。
(2)代码中百度云调用的face类,代码示例:
private string APP_ID = "";
private string API_KEY = "";
private string SECRET_KEY = "";
Face client = new Face(API_KEY, SECRET_KEY);
这里代码中APP_ID、API_KEY、SECRET_KEY的值来自前面步骤创建应用列表时的值
(3)摄像头的数据源,代码示例:
VideoCaptureDevice videoSource;
videoSource = new VideoCaptureDevice(videoDevices[comboBox1.SelectedIndex].MonikerString);
videoSource.DesiredFrameSize = new System.Drawing.Size(320, 240);
videoSource.DesiredFrameRate = 1;
(4)图片文件类型转换方法,代码示例:
public string ReadImg(string img)
{
return Convert.ToBase64String(File.ReadAllBytes(img));
}
public string ConvertImageToBase64(Image file)
{
using (MemoryStream memoryStream = new MemoryStream())
{
file.Save(memoryStream, file.RawFormat);
byte[] imageBytes = memoryStream.ToArray();
return Convert.ToBase64String(imageBytes);
}
}
public byte[] BitmapSource2Byte(BitmapSource source)
{
try
{
JpegBitmapEncoder encoder = new JpegBitmapEncoder();
encoder.QualityLevel = 100;
using (MemoryStream stream = new MemoryStream())
{
encoder.Frames.Add(BitmapFrame.Create(source));
encoder.Save(stream);
byte[] bit = stream.ToArray();
stream.Close();
return bit;
}
} catch (Exception ex)
{
ClassLoger.Error("BitmapSource2Byte",ex);
}
return null;
}
(5)使用HttpClient库连接百度AI的人脸识别API,代码示例:
using System.Net.Http;
using System.Threading.Tasks;
public class FaceRecognitionService
{
private readonly HttpClient _httpClient;
public FaceRecognitionService()
{
_httpClient = new HttpClient();
}
public async Task<string> RecognizeFaceAsync(byte[] imageBytes)
{
var content = new ByteArrayContent(imageBytes);
var response = await _httpClient.PostAsync("https://aip.baidubce.com/rest/2.0/face/v3/detect", content);
return await response.Content.ReadAsStringAsync();
}
}
(6)使用System.IO库进行文件操作,代码示例:
using System.IO;
public class FileService
{
public byte[] ReadFile(string path)
{
return File.ReadAllBytes(path);
}
public void WriteFile(string path, byte[] data)
{
File.WriteAllBytes(path, data);
}
}
(7)使用OpenCvSharp和System.Drawing库进行图像处理,代码示例:
using OpenCvSharp;
using System.Drawing;
public class ImageService
{
public Bitmap ProcessImage(string imagePath)
{
var image = new Mat(imagePath);
// 图像处理操作
return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(image);
}
}
(8)使用SQLite和Dapper进行数据库管理,代码示例 :
using Dapper;
using System.Data.SQLite;
public class DatabaseService
{
private readonly string _connectionString;
public DatabaseService(string connectionString)
{
_connectionString = connectionString;
}
public void SaveData(string data)
{
using (var connection = new SQLiteConnection(_connectionString))
{
connection.Execute("INSERT INTO FaceData (Data) VALUES (@Data)", new { Data = data });
}
}
}
(9)音视频处理:使用NAudio和FFmpeg进行音视频处理,代码示例:
using NAudio.Wave;
public class VideoService
{
public void ExtractAudio(string videoPath, string audioOutputPath)
{
using (var reader = new MediaFoundationReader(videoPath))
{
WaveFileWriter.CreateWaveFile(audioOutputPath, reader);
}
}
}
(10) 播放处理好的音频文件,为MP3,代码示例:
axWindowsMediaPlayer1.URL = "XXXXXXXXXXXXXXXXXXXXXXX";
axWindowsMediaPlayer1.Ctlcontrols.play();
5.运行结果
功能1:
识别分析图片
以上为对一个人像的初步分析结果
功能2:
人脸图片对比,选择人脸图,从文件中选择原照片和需要比照的照片,点击“图片对比”进行相似度分析
功能3:
运行代码,点击连接,窗体应用会连接设备摄像头进行采像,点击拍照,在用户分组输入添加到的组ID,并为添加的用户进行命名,最后点击人脸注册,设备会显示注册成功并进行语音播报
功能4:
运行程序后,连接设备摄像头,点击拍照后,再点击人脸登录,程序会将拍到的人脸与人脸库中的人脸信息进行对比,如果存在用户,则会显示相应的用户名,如下图
6.总结
6.1 网络连接
难点:
处理HTTP请求和响应。
管理API密钥和访问令牌。
解决方案:
使用HttpClient库简化HTTP请求处理。
将API密钥和访问令牌保存在安全位置,并在需要时加载。
6.2 文件处理
难点:
处理大文件和高频读写操作。
确保文件路径的正确性和文件读写的安全性。
解决方案:
使用异步读写操作提高性能。
进行路径验证和异常处理,确保文件操作的安全性。
6.3 图像处理
难点:
图像格式的兼容性和处理速度。
实现高效的图像处理算法。
解决方案:
使用OpenCvSharp库提供的高效图像处理函数。
通过多线程和异步处理提高处理速度。
6.4 数据库管理
难点:
设计合理的数据库结构以满足查询需求。
确保数据的一致性和完整性。
解决方案:
使用Dapper简化数据库操作,提高查询效率。
设计规范的数据库表结构,使用事务确保数据一致性。
6.5 音视频处理
难点:
处理不同格式的音视频文件。
提取和转换音视频数据。
解决方案:
使用FFmpeg和NAudio库处理多种格式的音视频文件。
通过配置FFmpeg和NAudio实现高效的音视频处理。