C#项目实现对百度API的调用

1.项目简介:

该项目是通过调用百度API,在窗体应用上实现人脸对照识别,照片取样等复杂功能,其中运用到了网络连接、文件处理、图像处理、数据库管理及音视频处理等技术。(该博客内容讲述具体调用方法和程序大体框架)

2.技术资源:

编程环境:VS2022

编程语言:C#

外部资源和库包:网络连接:HttpClient
                             文件处理:System.IO
                             图像处理:OpenCvSharp, System.Drawing
                             数据库:SQLite, Dapper
                             音视频处理:NAudio, FFmpeg
                             百度AI SDK:百度人脸识别API
                             库:aforg库

 3.具体操作步骤

首先实现对百度API的连接

(1)可通过百度浏览器搜索百度API,进入官网
 (2)在官网的产品中找到我们所需的人脸实名认证,里面的有免费的资源包供我们目前所需开发
 (3)点击立即使用
(4) 点击后的界面会出现领取免费资源,领取免费资源需要进行认证,认证有企业认证和个人认证,可根据自己具体情况认证
 (5)创建应用,创建的应用会有对应APPID、API Key和Secret Key,ID和两个Key码是用于我们在C#程序中实现连接
 (6)在应用列表查看人脸库,可以创建人脸库资源

 (7)创建用户组和用户,并添加用户照片

 4.在开发环境中代码实现

(1)打开vs2022,创建窗体应用并配置项目的依赖库。使用NuGet包管理器添加所需的库,如HttpClient、OpenCvSharp、SQLite、Dapper、NAudio和FFmpeg。

 (2)代码中百度云调用的face类,代码示例:
private string APP_ID = "";
private string API_KEY = "";
private string SECRET_KEY = "";
Face client = new Face(API_KEY, SECRET_KEY);

 这里代码中APP_ID、API_KEY、SECRET_KEY的值来自前面步骤创建应用列表时的值

(3)摄像头的数据源,代码示例:
VideoCaptureDevice  videoSource;
videoSource = new VideoCaptureDevice(videoDevices[comboBox1.SelectedIndex].MonikerString);
videoSource.DesiredFrameSize = new System.Drawing.Size(320, 240);
videoSource.DesiredFrameRate = 1;
(4)图片文件类型转换方法,代码示例:
public string ReadImg(string img)
        {
            return Convert.ToBase64String(File.ReadAllBytes(img));
       }

public string ConvertImageToBase64(Image file)
        {
            using (MemoryStream memoryStream = new MemoryStream())
            {
                file.Save(memoryStream, file.RawFormat);
                byte[] imageBytes = memoryStream.ToArray();
                return Convert.ToBase64String(imageBytes);
            }
        }

public byte[] BitmapSource2Byte(BitmapSource source)
        {
            try
            {
                JpegBitmapEncoder encoder = new JpegBitmapEncoder();
                encoder.QualityLevel = 100;
                using (MemoryStream stream = new MemoryStream())
                {
                    encoder.Frames.Add(BitmapFrame.Create(source));
                    encoder.Save(stream);
                    byte[] bit = stream.ToArray();
                    stream.Close();
                    return bit;
                }
            } catch (Exception ex)
            {
                ClassLoger.Error("BitmapSource2Byte",ex);
            }
            return null;
        }
(5)使用HttpClient库连接百度AI的人脸识别API,代码示例:
using System.Net.Http;
using System.Threading.Tasks;
 
public class FaceRecognitionService
{
    private readonly HttpClient _httpClient;
 
    public FaceRecognitionService()
    {
        _httpClient = new HttpClient();
    }
 
    public async Task<string> RecognizeFaceAsync(byte[] imageBytes)
    {
        var content = new ByteArrayContent(imageBytes);
        var response = await _httpClient.PostAsync("https://aip.baidubce.com/rest/2.0/face/v3/detect", content);
        return await response.Content.ReadAsStringAsync();
    }
}
 (6)使用System.IO库进行文件操作,代码示例:
using System.IO;
 
public class FileService
{
    public byte[] ReadFile(string path)
    {
        return File.ReadAllBytes(path);
    }
 
    public void WriteFile(string path, byte[] data)
    {
        File.WriteAllBytes(path, data);
    }
}
(7)使用OpenCvSharp和System.Drawing库进行图像处理,代码示例:
using OpenCvSharp;
using System.Drawing;
 
public class ImageService
{
    public Bitmap ProcessImage(string imagePath)
    {
        var image = new Mat(imagePath);
        // 图像处理操作
        return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(image);
    }
}
(8)使用SQLite和Dapper进行数据库管理,代码示例 :
using Dapper;
using System.Data.SQLite;
 
public class DatabaseService
{
    private readonly string _connectionString;
 
    public DatabaseService(string connectionString)
    {
        _connectionString = connectionString;
    }
 
    public void SaveData(string data)
    {
        using (var connection = new SQLiteConnection(_connectionString))
        {
            connection.Execute("INSERT INTO FaceData (Data) VALUES (@Data)", new { Data = data });
        }
    }
}
 (9)音视频处理:使用NAudio和FFmpeg进行音视频处理,代码示例:
using NAudio.Wave;
 
public class VideoService
{
    public void ExtractAudio(string videoPath, string audioOutputPath)
    {
        using (var reader = new MediaFoundationReader(videoPath))
        {
            WaveFileWriter.CreateWaveFile(audioOutputPath, reader);
        }
    }
}
 (10) 播放处理好的音频文件,为MP3,代码示例:
axWindowsMediaPlayer1.URL = "XXXXXXXXXXXXXXXXXXXXXXX";
axWindowsMediaPlayer1.Ctlcontrols.play();

5.运行结果

功能1:

识别分析图片

 以上为对一个人像的初步分析结果

 功能2:

人脸图片对比,选择人脸图,从文件中选择原照片和需要比照的照片,点击“图片对比”进行相似度分析

 功能3:

运行代码,点击连接,窗体应用会连接设备摄像头进行采像,点击拍照,在用户分组输入添加到的组ID,并为添加的用户进行命名,最后点击人脸注册,设备会显示注册成功并进行语音播报

功能4: 

运行程序后,连接设备摄像头,点击拍照后,再点击人脸登录,程序会将拍到的人脸与人脸库中的人脸信息进行对比,如果存在用户,则会显示相应的用户名,如下图

6.总结


6.1 网络连接


难点:

处理HTTP请求和响应。
管理API密钥和访问令牌。


解决方案:

使用HttpClient库简化HTTP请求处理。
将API密钥和访问令牌保存在安全位置,并在需要时加载。


6.2 文件处理


难点:

处理大文件和高频读写操作。
确保文件路径的正确性和文件读写的安全性。


解决方案:

使用异步读写操作提高性能。
进行路径验证和异常处理,确保文件操作的安全性。


6.3 图像处理


难点:

图像格式的兼容性和处理速度。
实现高效的图像处理算法。
解决方案:

使用OpenCvSharp库提供的高效图像处理函数。
通过多线程和异步处理提高处理速度。


6.4 数据库管理


难点:

设计合理的数据库结构以满足查询需求。
确保数据的一致性和完整性。
解决方案:

使用Dapper简化数据库操作,提高查询效率。
设计规范的数据库表结构,使用事务确保数据一致性。


6.5 音视频处理


难点:

处理不同格式的音视频文件。
提取和转换音视频数据。


解决方案:

使用FFmpeg和NAudio库处理多种格式的音视频文件。
通过配置FFmpeg和NAudio实现高效的音视频处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值