2024 National Invitational of CCPC (Zhengzhou)(L)

dp[i]表示修复i个bug所需要的最小时间,修复第i个bug,要么是单独修第i个,要么是和第i - 1,i - 2.....1个一起修,那么状态转移方程dp[i] = min(dp[i],arr[i] + pow4[i - j + 1] + dp[j - 1]);其中j从i - 1开始枚举,但是这样枚举会超时。可以发现题目的修复时间为x的四次方,同时修复的个数一定不能很多,那么最多是多少呢,发现22的四次方是大于2e5的,如果选择大于22个,肯定不如单独修一个,所以个数从1枚举到22即可

#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#include<functional>
using namespace std;
#define int long long 
using ull = unsigned long long;

inline int inc(int x,int v,int mod){x+=v;return x>=mod?x-mod:x;}//代替取模+
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N = 2e5 + 10,M = log2(N)+1;;
const int mod = 1e9 + 7;
inline int read()
{
    int x = 0,f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')
            f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
        x = x * 10 + ch - '0',ch = getchar();
    return x * f;
}

void solve()
{
    int n,m;
    cin >> n >> m;
    vector<int>arr(m + 10);
    vector<int>pow(30);
    for(int i = 1; i <= m ; i ++)
    {
        cin >> arr[i];
    }
    for(int i = 1; i <= 25; i ++)
    {
        pow[i] = i * i * i * i;
    }
    vector<int>dp(m + 10,0x3f3f3f3f3f3f3f3f);
    dp[0] = 0;
    dp[1] = arr[1] + 1;
    for(int i = 2; i <= m; i ++)
    {
        dp[i] = arr[i] + 1 + dp[i - 1];
        for(int j = i - 1; i - j + 1 <= 25; j --)
        {
            if(j - 1 < 0) break;
            dp[i] = min(dp[i],arr[i] + pow[i - j + 1] + dp[j - 1]);
        }
        //cout << dp[i] << ' ';
    }
    cout << dp[m] << endl;
}

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    int tt = 1;
    //cin >> tt;
    while(tt --)
    {
        solve();
    }   
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值