高效快速教你deepseek如何进行本地部署并且可视化对话

随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于open ai 的gpt

安装ollama

  • 我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题,如果你有我的好友的话可以私信我把exe文件发你
    image.png

  • 选择对应的版本进行下载,这里我的实例是Windows
    image.png

  • 这里我们就显示下载好了,软件还怪大的,745MB
    image.png

  • 我们找到我们下载那好的exe文件双击进行安装
    image.png

  • 直接点击这里的install进行软件的安装,等待几分钟即可
    image.png

  • 如何判断我们的ollama如何安装完毕呢?我们直接win+R输入cmd调出命令行进入到命令模式,输入命令ollama -v查看是否安装成功,输入完命令出现了版本号的话就说明你安装成功了
    image.png

部署DeepSeek R1模型

接下来我们进行部署DeepSeek R1模型的操作

  • 我们依旧打开Ollama的官网,然后我们可以看见我们左上角有一个Models的选项,我们点击下
    image.png
  • 然后第一个就是deepseek R1的模型,我们再次进行点击操作
    image.png
  • 这里的话有很多模型,我们可以根据自己电脑的显卡配置进行选择相应的版本
    image.png
  • 下面是我总结的一个模型参数大小对应的显卡配置,为了更加方便的给大家进行演示操作,这里的话我选择这个7B模型
模型参数 (B)VRAM 要求 (GB)推荐 GPU
DeepSeek - R1 - Zero671B~1,342 GB多 GPU 配置(例如,NVIDIA A100 80GB x16)
DeepSeek - R1671B~1,342 GB多 GPU 配置(例如,NVIDIA A100 80GB x16)
DeepSeek - R1 - Distill - Qwen 1.5B1.5B~0.75 GBNVIDIA RTX 3060 12GB 或更高
DeepSeek - R1 - Distill - Qwen 7B7B~3.5 GBNVIDIA RTX 3060 12GB 或更高
DeepSeek - R1 - Distill - Llama 8B8B~4 GBNVIDIA RTX 3060 12GB 或更高
DeepSeek - R1 - Distill - Qwen 14B14B~7 GBNVIDIA RTX 3060 12GB 或更高
DeepSeek - R1 - Distill - Qwen 32B32B~16 GBNVIDIA RTX 4090 24GB
DeepSeek - R1 - Distill - Llama 70B70B~35 GB多 GPU 配置(例如,NVIDIA RTX 4090 x2)
  • 我们直接选择7B这个模型,然后右边有一个对应的命令,我们直接复制
    image.png

  • 回到我们的命令模式,我们直接win+R输入cmd调出命令行进入到命令模式,然后粘贴我们刚刚复制的命令

  • 等待片刻进行下载就行了,这里的话我等了一上午才下好的,有点小慢说实话,这个下载的话好像默认是在c盘里面下载的,如果你想在D盘下载的话你去D盘创建一个仓库,如果当你看到这里的话已经下好了的话,那么你可以等这个下载完成之后输入命令进行卸载操作,然后再去D盘仓库打开命令模式再进行安装就会直接在你的D盘进行下载了,这个卸载的命令的话后面会说的哈
    image.png

  • 如果你的下载速度很慢的话,你可以CTRL+C先退出这个命令,然后再输入命令重新进行下载,还是会从上次的下载进度继续下载的,我这里重新下载了,可以发现速度快了些了image.png

  • 我这里也是重复下载了很多遍了,因为这个网速时快时慢,很难受
    image.png

  • 这里的话我们就下载好了,出现了一个success,那么我们就可以直接进行对话了,如果想退出对话的话,我们可以输入/bye来退出对话
    image.png

  • 这里我们让他帮我们写一个冒泡排序,可以发现很智能嘞,我们可以输入命令
    image.png

  • 但是我们现在想重新进入到对话的话,我们可以输入命令ollama list重新查看我们已经下载好了的模型,那么我们可以发现这里的R1 7B是我们刚刚下载好的模型
    image.png

  • 我们将这个模型的名字复制下来,然后回到命令行输入ollama run deepseek-r1:latest我们就能重新进入到对话了,这里我们简单进行对话下,可以发现效果还是挺ok的
    image.png

  • 那么到这里的话我们ollama安装deepseek的模型就搞定啦,但是呢?我们每次都需要调用命令行就很不方便,那么我们能不能搞一个聊天的界面,和QQ微信一样呢?这里我的回答是可以的,这个就是在可视化的界面使用本地的模型

  • 这里我们教你们如何卸载我们本地的模型

  • 我们这里的话输入了olloma list可以看到我们下载的模型,然后将我们的R1模型名称进行复制,然后输入命令ollama rm deepseek-r1:latest 然后就可以将我们本地的删除了
    在这里插入图片描述

安装chatbox

  • 我们打开chat的官网进行下载操作,我们直接点击免费下载就行了,当然了你如果不想下载的话可以私信我哦,我直接发你这样更快
    image.png
  • 我们双击安装包,点击下一步
    image.png
  • 选择好我们对应的文件夹进行安装操作,安装目录的话我们可以自行进行设置,尽量放在D盘,不要放在C盘
    image.png
  • 这里我们安装好了之后我们运行这个软件,我们选择这个使用自己的 API Key或本地模型
    image.png
  • 选择这个chatbox AIimage.png
  • 我们在模型设置这里选择Ollama API,然后这个域名的话我们是可以不用改的image.png
  • 然后这个模型这里就会显示我们上面下载好了的deepseek的模型,然后保存就行了image.png
  • 然后我们就可以在这个可视化的界面进行聊天了,可以发现反应的速度很快,回答的话也很智能,那么到这里的话我们本地部署的R1就可以使用了image.png

好的!以下是使用冒泡排序算法对一个整数数组进行排序的Python实现:

def bubble_sort(arr):
    n = len(arr)
    for i in range(n-1):
        # 如果已经有序,提前退出
        already_sorted = True
        for j in range(n - 1 - i):
            if arr[j] > arr[j+1]:
                # 交换元素位置
                arr[j], arr[j+1] = arr[j+1], arr[j]
                already_sorted = False
        if already_sorted:
            break

# 示例数组
arr = [5, 4, 3, 2, 1]

bubble_sort(arr)

print("排序后:", arr)

代码解释:

  1. 函数定义bubble_sort(arr)接受一个整数数组 arr 作为输入。
  2. 外层循环for i in range(n-1),其中 n 是数组的长度。这个循环控制整个数组的大致范围。
  3. 提前退出优化already_sorted = True,如果在某一趟排序中没有发生交换,则说明数组已经有序,提前退出。
  4. 内层循环for j in range(n - 1 - i),用于比较相邻的元素,并进行交换。
  5. 交换条件if arr[j] > arr[j+1],如果当前元素大于下一个元素,则交换它们的位置。
  6. 示例数组arr = [5, 4, 3, 2, 1],用于测试排序算法。
  7. 调用函数并打印结果:对数组 arr 调用 bubble_sort() 函数,并打印排序后的结果。

运行这段代码后,输出将是:

排序后: [1, 2, 3, 4, 5]

冒泡排序的时间复杂度为 O(n²),适用于小规模数据的排序。

这里其实是可以自定义模型的,但是这里我就不过多进行叙述了,因为我们上面这个就够用了。
这个自定义的话就是你让这个deepseek带入一个角色,你让他是一个医生,然后他就会以医生的视角回答你所询问的问题

那么在平常的代码问题,我们对可以询问我们本地部署的这个deepseek,十分方便呢

感觉这个deepseek的话对图片的分析还是差点意思
image.png

评论 115
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Undoom

感谢啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值