牛客网:NC14517回文串
问题描述
给定一个字符串(长度小于1200,仅包含小写字母),找出其中最长的回文子串的长度。
回文串指的是正着读和倒着读都一样的字符串,例如"aba"、"abba"等。
解题思路
本题解决方案采用了中心扩展法,这是解决回文串问题的经典算法之一。其基本思想是:
- 遍历字符串中的每个字符
- 以每个字符为中心向两边扩展,检查是否构成回文串(处理奇数长度的回文串)
- 以每个字符及其右侧字符之间的空隙为中心向两边扩展(处理偶数长度的回文串)
- 记录并返回最长的回文串长度
这种方法的时间复杂度为O(n²),空间复杂度为O(1),非常高效。
代码实现与分析
#include<iostream>
#include<algorithm>
using namespace std;
// 中心扩展函数:从索引i和j开始向两边扩展,返回能构成的回文串长度
int c(int i, int j, string s){
while(i >= 0 && j < s.length() && s[i] == s[j]) i--, j++;
return j - i - 1; // 返回回文串长度
}
int main(){
string s;
while(cin >> s){
int res = 0;
// 遍历字符串的每个位置
for(int i = 0; i < s.length(); i++)
// 取奇数长度(i,i)和偶数长度(i,i+1)扩展的较大值,并与当前最大值比较
res = max({c(i, i, s), c(i, i+1, s), res});//内层比较:计算两种扩展情况的最大值
cout << res << "\n";
}
}
核心代码解析
- 中心扩展函数
c(i, j, string s)
:- 参数
i
和j
表示扩展的中心位置 - 当
i==j
时,处理奇数长度的回文串(如"aba") - 当
i+1==j
时,处理偶数长度的回文串(如"abba") - 通过
while
循环不断向两边扩展,直到不满足回文条件 - 返回找到的回文串长度:
j-i-1
(计算公式考虑了循环结束时的边界调整) - 内层比较:计算两种扩展情况的最大值:
c(i, i, s):以单个字符s[i]为中心,向左右扩展计算奇数长度回文的长度。
示例:对于"aba"的i=1(字符b),扩展后得到长度为3的回文"aba"。
c(i, i+1, s):以相邻字符s[i]和s[i+1]之间的间隙为中心,向左右扩展计算偶数长度回文的长度。
示例:对于"abba"的i=1(两个b之间的间隙),扩展后得到长度为4的回文"abba"。
max({…, res}):比较三种值:当前奇数长度、当前偶数长度、历史最大值res,取最大者更新结果
- 参数
- 主函数处理逻辑:
- 循环读取输入字符串
- 遍历字符串每个位置,以该位置为中心尝试两种扩展方式
- 使用
max()
函数比较并更新最大回文长度 - 输出结果
示例分析
以输入"aqppqole"为例,最长回文子串是"qppq",长度为4:
- 遍历到’p’时,以(i,i+1)为中心向两边扩展
- 发现"qppq"是回文串,长度为4
- 这是整个字符串中最长的回文子串
本题实现简洁高效,巧妙地处理了奇偶长度的回文情况。