人工智能练习题-判断题题库指南

在准备人工智能训练师证书考试的过程中,掌握判断题的解题技巧是非常重要的。上一张博客为大家提供了一些大题题库,这次博客为大家分享一些判断题,这类题目通常用于测试考生对基本概念、理论知识和技术细节的理解程度。本指南将为考生提供一个系统的方法来应对判断题,并通过具体的例子和策略帮助大家更好地备考。

关于判断题大家须知:

  1. 二元选择:每道判断题只有两种可能的答案——正确或错误。
  2. 直接性:问题陈述通常是明确且简洁的,要求考生根据已有的知识做出快速判断。
  3. 覆盖面广:涉及的知识点广泛,从基础概念到高级应用都有可能出现。

下面为大家分享一些题库供大家学习参考。

1.在人工智能训练的模型训练阶段,需要在训练集上达到理想的评估指标。

答案:对

2.智能搜索系统可以利用机器学习算法来提供个性化的搜索结果。

答案:对

3.模型训练中导致过拟合的原因往往是模型过分地考虑了训练集中已知数据的自身特性(如噪声数据),而导致对未知的测试集中新样本的预测能力降低。

答案:对

4.文本识别算法CRNN中使用ReLU损失函数,将循环神经网络获取的标签特征分布通过一系列的计算操作转换为真实的预测值。

答案:错

5.在深度学习中,循环神经网络RNN由于其具有记忆性的特点,常用于自然语言处理等领域。

答案:对

6.F1-score值越大,表示模型的性能越差。

答案:错

7.在进行图像分类时,每个类别的图像数量应该尽可能保持一致。

答案:对

8.Transformer模型是一种采用自注意力机制的深度学习模型。

答案:对

9.语音切割规范中提到,如果说话人第一遍读错了句子,停顿后又重复了该句子的朗读,则应该将两次朗读都标注。

答案:错

10.目标检测任务中,标注框的大小和位置对于检测任务的效果没有任何影响。

答案:错

11.AI云平台中已训练好的内置模型,只能直接使用,无法根据任务类型调整参数。

答案:错

12.情感数据标注规范中,应该区分文字表达和口语表达的情绪差别。

答案:对

13.知识图谱的目标是准确地模拟现实世界中的所有事物和关系。

答案:对

14.训练后的模型在正式集成之前,需要评估模型效果是否可用。

答案:对

15.新闻分类标注属于文本类数据标注。

答案:对

16.在文本类数据处理中,分词和词性标注的主要目的是进行文本数据的加密和解密处理

答案:错

17.相邻三辆汽车可以拉一个框进行标注。

答案:错

18.个性化推荐系统的目标是提供与用户兴趣相关的产品或服务建议。

答案:对

19.算法性能测试是用来测试算法的正确性。

答案:错

20.TensorFlow 2.x版本引入了Eager Execution(即时执行)模式,可以动态执行模型的每一步操作,无需构建图。

答案:对

21.数据规范化可以消除数据中的冗余和不一致,提高数据的质量和可信度。

答案:对

22.每个神经网络层都包含多个神经元,可以通过反向传播算法进行优化。

答案:对

23.量子计算是一种能够解决所有经典计算问题的方法。

答案:错

24.语音清洗是对语音进行重新录制和编辑,以提高语音质量。

答案:错

25.智能控制模块通过数据分析技术实现对设备的自动控制。

答案:错

26.在scikit-learn中,LabelEncoder用于处理连续数值特征。

答案:错

27.EasyDL不支持自动标注。

答案:错

28.EAST文本检测算法预测的文本框形状可以是常规的水平矩形框或是旋转的文本框。

答案:对

29.人体姿态识别是指通过计算机视觉技术,对人体在图像或视频中的姿态进行自动识别和分析。姿态识别算法可以对人体的关键点、姿态、动作等进行识别和分析,从而实现对人体运动和行为的自动识别和监测。

答案:对

30.外语相关的语音标注任务需要标注人员具备相应专业知识或者由专业人员完成

答案:对

31.语音内容转写的基本原则是“所看即所写”。

答案:错

32.泛问答系统通常包括自动问答、阅读理解等。属于多轮次的对话系统。

答案:错

33.票据OCR识别中的文本检测任务是要定位图片中的文本框坐标,对检测图片进行包含文字部分的和不包含文字部分的二分类。

答案:对

34.中文分词的目的是将一段中文文本划分成一个个单独的字。

答案:错

35.在数据导入到人工智能测试平台前需要进行数据清洗。

答案:对

36.可从训练数据集中切分出验证集,验证集中的数据将不参与训练模型,而是用于验证训练后的模型,从而增强其泛化能力。

答案:对

37.智能搜索业务可以通过自然语言处理技术来解析和理解搜索查询。

答案:对

38.决策树算法采用树形结构,使用层层推理来实现最终的结果分类。

答案:对

39.scikit-learn中的LinearDiscriminantAnalysis(LDA)方法是一种基于分类方法的降维方法。

答案:错

40.人工智能训练师不需要具备团队协作能力,独立完成任务就可以了。

答案:错

41.属性标注对像素点的判定准确性要求极高。

答案:错

42.长短期记忆网络LSTM是一种特殊的循环神经网络,可以较好地解决长时依赖问题,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

答案:对

43.角色扮演法的主要目的是让受训人员表演,提高娱乐性。

答案:错

44.一般情况下,用于训练模型的数据不需要任何处理就可以直接使用。

答案:错

45.sklearn中提供了常用的数据集和数据预处理方法。

答案:对

46.在人工智能业务流程构建中,模型训练的核心目标是通过对数据进行学习和优化,生成能够对新数据进行预测和推断的模型。

答案:对

47.scikit-learn中的KMeans构建模块是用来构建回归算法的。

答案:错

48.针对Tensorflow(tf对象)中Keras序列模型,使用tf.keras.layers.Conv2D()构造卷积层,其中“activation”参数用于指定损失函数。

答案:错

49.语音类数据质量要求包括语音清晰、无噪音,语段截取正确准确、有逻辑性等。

答案:对

50.任务或目标型的对话系统一般需要通过多轮交互实现一个特定的任务或目标。

答案:对

51.对数据进行结果可视化的目的是提高数据安全性。

答案:错

52.文本类数据清洗包括统一数据规格。

答案:对

53.在单个业务数据的处理过程中,数据可视化和探索性分析是可选步骤,对最终的数据处理结果没有影响。

答案:错

54.使用EasyDL平台内置的OCR识别模块来识别图片中的文字信息,不需要对模型进行训练就可直接使用。

答案:对

55.机器学习“训练”产生“模型”,“模型”指导“预测”。

答案:对

56.人工智能科学是一门综合学科,涉及多个学科的研究。

答案:对

57.Transformer最初应用于自然语言处理并取得较好的效果

答案:对

58.结构化数据具有明确定义的数据模式和固定的数据格式,便于存储、管理和分析。

答案:对

59.知识图谱可以用来进行关系标注。

答案:对

60.在复杂综合业务流程分析中,控制图和帕累托图是常用的分析工具。

答案:对

61.在混淆矩阵中,FP代表负样本被算法正确识别。

答案:错

62.语音是用规定之外的语言朗读的,不会被判定为无效语音。

答案:错

63.智能客服机器人在回复用户时,如果用户的问题在各层级知识库中均未找到匹配,则一般转人工处理。

答案:对

64.语音类数据质量不仅与语音本身的特性有关,还与采集设备、采集环境等因素有关。

答案:对

65.人工智能训练师需要具备创新能力来应对不断发展的人工智能技术。

答案:对

66.人机交互是指用户向计算机单向传递信息。

答案:错

67.业务流程的梳理是数据分析的基础和前提。

答案:对

68.在准备数据的时候,应该尽可能采集真实场景下的数据。

答案:对

69.目前中文票据OCR识别中主流的文本识别算法均采用基于深度学习的方法。

答案:对

70.文本类数据清洗后,所有不符合项目需求的数据都应该删除。

答案:错

71.假设paddlepaddle中文票据OCR识别预训练模型ocr的recognize_text()方法返回对象result,则results[0]['data']对应第一幅输入票据识别出来所有文本信息。

答案:对

72.人工智能训练师应该具备持续学习和更新知识的能力,具备创新能力。

答案:对

73.关系标注中,实体数量应该尽量多,以便提升关系标注质量。

答案:错

74.标注工具的作用是保证标注结果的质量。

答案:错

75.最优化决策支持利用人工智能计算来实现系统的最优性能,以及得出达到最优业务指标的分配或决策。

答案:对

76.Transformer只能用于图像识别

答案:错

77.全连接层如果输出值采用softmax逻辑回归进行分类,该层也称为softmax层。

答案:对

78.Excel不能进行数据清洗。

答案:错

79.卷积神经网络中的Dropout层能够删除模型中的冗余数据,从而减少计算工作量。

答案:错

80.MindSpore是一个基于静态图计算的深度学习框架。

答案:错

本判断题题库共201道题,若想获取更多资源,欢迎私信获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaiJying

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值