2024睿抗CAIP-编程技能赛-本科组(省赛)题解

蓝桥杯拿了个省三,天梯没进1队,睿抗是我最后的机会

RC-u4 章鱼图的判断

题目描述

对于无向图 G = ( V , E ) G=(V,E) G=(V,E),我们定义章鱼图为:

有且仅有一个简单环(即没有重复顶点的环),且所有其余边和点都构成附着在该环上的树结构。换言之,是一个环作为“身体”,多个树作为“触手”的连通图。

给定一个无向图,请判断图中是否存在且仅存在一个章鱼子图。


输入格式

  • 第一行是一个正整数 T T T,表示数据的组数, 1 ≤ T ≤ 5 1 \le T \le 5 1T5
  • 每组数据的第一行是两个正整数 N , M N,M N,M,表示图中有 N N N 个顶点和 M M M 条边, 1 ≤ N , M ≤ 1 0 5 1 \le N, M \le 10^5 1N,M105
  • 接下来的 $ M $ 行中,每行包含两个整数 u , v u, v u,v,表示顶点 u u u 与顶点 v v v 之间有一条无向边。
  • 所有顶点编号从 1 1 1 开始。输入中不会包含重复边或自环。

输出格式

对于每组数据,输出一行结果:

  • 如果图中存在且仅存在一个章鱼子图,输出:Yes x,其中 x 是该章鱼图中环的大小(即环中顶点数)。
  • 否则,输出:No y,其中 y 是图中满足章鱼图结构的连通子图个数。

输入样例

3
10 10
1 3
3 5
5 7
7 9
1 2
2 4
2 6
3 8
9 10
1 9
10 10
1 3
3 5
5 7
7 9
9 1
1 2
2 4
4 8
8 10
10 1
10 10
1 3
3 5
5 7
7 9
9 1
2 4
4 8
8 10
10 2
10 6

输出样例

Yes 5
No 0
No 2

第一版 (2 分)

想到并查集,题目理解错了题目要求是 :则在一行中输出 ``Yes 和章鱼子图环的大小(及环中顶点数要求的环的大小,而我第一次直接求的连通分量的大小,所以不该用并查集的,直接暴搜

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int fa[N];
int n, m;


int find(int x)
{
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}
 
int main()
{
	int k, cnt = 0, num = 0;
	cin >> k;
	while(k --)
	{
		cnt = 0;
		cin >> n >> m;
		vector<int> siz(n + 1, 1);
		for (int i = 0; i <= n +1; i ++)
			fa[i] = i;
		for (int i = 1; i <= m; i ++)
		{
			int a, b;
			cin >> a >> b;
			a = find(a);
			b = find(b);
			if (a == b) {
				cnt ++;
				if (cnt == 1) {
					num = siz[a];
				}
			}
			else if (a != b)
			{
				if (siz[a] > siz[b]) swap(a, b);
				fa[a] = b;
				siz[b] += siz[a];
			} 
		}
		if (cnt == 1) {
			cout << "Yes" << " " << num << endl;
		}
		else
		{
			cout << "No" << " " << cnt << endl;
		}
	}
	
	return 0;
  }  

正确的思路应该是:

先分出连通块,然后在连通快里面去 dfs 看是不是章鱼图了

第二版(100)

面对这道题可以直接进行搜索,我们先对每个点找到他的连通分量,然后在这个连通分量里面去找有没有环,如果有环,再去这个环中找 环的节点个数

代码加了注释

#include<bits/stdc++.h>
using namespace std;
// 存图 
vector<vector<int>> g; 

// 从每个节点开始找连通块、连通块中找环的状态数组 
vector<bool> visited, vis2;
// 连通量节点数、父节点、环节点数 
vector<int> comNodes,  parent, circleNodes;

// 找到连通分量 
void dfs1(int u)
{
	visited[u] = true;
	comNodes.push_back(u);
	for (int v : g[u])
	{
		if (!visited[v]) {
			dfs1(v);
		}
	 } 
 } 


void dfs2(int u , int p)
{
	vis2[u] = true;
	for (int v : g[u])
	{
		if (v == p) continue;
		if (!vis2[v]) {
			parent[v] = u;
			dfs2(v, u);
			if (!circleNodes.empty()) return ;
		} else {
			// 找到回边(u, v),说明存在一个环
			int x = u;
			circleNodes.push_back(v);
			while (x != v) {
				circleNodes.push_back(x);
				x = parent[x];  // 一步一步回找,找出环的节点个数 
			} 
			return ;
		}
	}
}

int main()
{
	int t;
	cin >> t;
	while(t --)
	{
		
		int n, m;
		cin >> n >> m;
		g.assign(n + 1, {});  // 清空 
		for (int i = 1; i <= m; i ++)
		{
			int u, v;
			cin >> u >> v;
			g[u].push_back(v);
			g[v].push_back(u);
		}
		// cnt1:第一个环中的节点数量, 
		// cnt2:表示的是环的数量 
		int cnt1 = 0, cnt2 = 0; 
		
		// 
		visited.assign(n + 1, false);
		for (int i = 1; i <= n; i ++)
		{
			if (!visited[i])
			{
				comNodes.clear();
				dfs1(i);
				// 统计顶点数和边数
				long long sumDeg = 0;
				for(int u:comNodes)
					sumDeg += g[u].size();
				
				int  V = comNodes.size();
				int E = sumDeg / 2;  // 无向图
				
				// 判断是否是环的条件 
				if (E == V && V > 2) {
					cnt2 ++;
					if (cnt2 == 1) {
						// 统计第一个章鱼图的环的大小
						vis2.assign(n + 1, false);
						circleNodes.clear();
						parent.assign(n + 1, -1);
						dfs2(comNodes[0], -1);
						cnt1 = circleNodes.size(); 
					}
				} 
			}
		}
		if (cnt2 == 1) {
			cout << "Yes" << " " << cnt1 <<endl;
		} else {
			cout << "No" << " " << cnt2 << endl;
		}
	}
	
	
	return 0;
}

RC-u3 暖炉与水豚

题目描述

在一个 ( N × M ) (N \times M) (N×M) 的矩阵中,有若干只水豚和若干个暖炉。暖炉可以辐射其中心为中心的 ( 3 × 3 ) (3 \times 3) (3×3) 区域(上下左右斜对角一共9格),使其中的水豚变得暖和。

现在你得到了一个矩阵,其中:

  • "w" 表示暖和的水豚;
  • "c" 表示很冷的水豚;
  • "m" 表示暖炉;
  • "." 表示一个空格(可能是真的空,或者被挡住的暖炉)。

问题:

由于图像被遮挡,最多只有一只水豚的状态是错误的(比如周围没有暖炉却是暖和的),请你判断:

在哪些空格位置放一个暖炉,可以让整个状态变得合法?

一个位置 ((r, c)) 被认为可能藏有暖炉,当在此位置放置暖炉后,所有水豚的状态都与周围暖炉情况一致(至多一处例外)。


输入格式

  • 第一行两个正整数 (N, M) ( ( 1 ≤ N , M ≤ 1000 ) ) ((1 \leq N, M \leq 1000)) (1N,M1000),表示矩阵行列数;
  • 接下来 (N) 行,每行 (M) 个字符,表示矩阵中的内容,字符含义如下:
    • .:空格或疑似空格;
    • c:很冷的水豚;
    • w:暖和的水豚;
    • m:暖炉。

输出格式

输出若干行,每行两个正整数 (r, c),表示该位置可能藏有暖炉。多个可能位置需要按 行号升序、列号升序 输出。

如果没有任何可能位置,输出一行:

Too cold!

输入样例

6 8
wm....mw
.w..ww..
..wm.wwm
w.w....w
.m.c.m..
w.....w.

输出样例

2 7
3 5
4 6
4 7

算法思路

按照题目一步一步模拟即可,先把 c 周围的格子全部标记(不可能藏有火炉),然后枚举 m,把所有 m 周围的 w 都温暖, 最后枚举没有被温暖的 w,火炉就可能藏在它周围。

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
char g[N][N];
bool st[N][N];
int n, m;
int dx[] = {-1, -1, -1, 0, 0, 1, 1, 1};
int dy[] = {-1, 0, 1, -1, 1, -1, 0, 1}; 

void bfs(int x, int y)
{
	queue<pair<int, int>> q;
	st[x][y] = 1;
	q.push({x, y});
	while (q.size())
	{
		auto t = q.front();
		q.pop();
		for (int i = 0; i < 8;i ++)
		{
			int a = t.first + dx[i];
			int b = t.second + dy[i];
			if (a < 1 || b < 1 || a > n || b > m) continue;
			if (st[a][b]) continue;
			st[a][b] = 1;
		}
	 } 
}
int cnt = 0;
bool flag = 1;
signed main()
{
	cin >> n >> m;
	// 读图 
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= m; j ++)
			cin >> g[i][j];
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= m; j ++)
		{
			// 如果是c,说明周围的所有都不能是火炉 
			if (g[i][j] == 'c')
			{
				st[i][j] = 1;
				for (int k = 0; k < 8; k ++)
				{
					int a = i + dx[k];
					int b = j + dy[k];
					if (g[a][b] == '.') {
						st[a][b] = 1;
						g[a][b] = '#';  // 防止后面误判 
					}
				}
			}
			else if (g[i][j] == 'm')
			{
				bfs(i, j); // 把火炉周围的温暖 
			}
		}
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= m; j ++)
		{
			if (!st[i][j] && g[i][j] == 'w')  // 找到没有被温暖的,火炉可能藏在它周围 
			{
				for (int k = 0; k < 8; k++ )
				{
					int a  = i + dx[k];
					int b = j + dy[k];
					if (g[a][b] == '.')
					{
							cout << a << " " << b << endl;
							flag = 0;  // 说明至少一个隐藏火炉 
					}
				}
			}
		}
	if(flag) cout << "Too cold!" ;
 	 
	return 0;
}

RC-u5 工作安排

题目描述

小 K 有 $ N $ 项工作等待完成,每项工作有以下三个属性:

  • t i t_i ti:完成这项工作所需的时间;
  • d i d_i di:这项工作的截止时间(必须在这个时间之前或刚好完成);
  • p i p_i pi:完成这项工作可以获得的报酬。

工作从时间 $ 0 $ 开始,每个时间点只能做一项工作,且工作不可中断、不可切换

目标:

请你帮小 K 规划安排,选择若干项工作,在不违反时间安排的前提下,获得尽可能多的报酬


输入格式

  • 第一行是一个正整数 T T T 1 ≤ T ≤ 5 1 \leq T \leq 5 1T5),表示测试数据的组数;
  • 对于每组数据,第一行是一个整数 N N N 1 ≤ N ≤ 5000 1 \leq N \leq 5000 1N5000),表示工作数量;
  • 接下来的 N N N 行,每行 3 个非负整数 t i , d i , p i t_i, d_i, p_i ti,di,pi(均 ≤ 5000 \leq 5000 5000),表示第 i i i 项工作的耗时、截止时间和报酬。

输出格式

每组数据输出一行,表示在最优安排下小 K 可以获得的最大报酬。


输入样例

3
5
1 2 50
3 3 100
1 5 1
3 2 5000
4 5 30
5
1 2 50
3 3 20
1 5 1
3 2 5000
4 5 30
5
1 2 50
3 3 100
1 5 1
3 2 5000
5 5 800

输出样例

101
80
800

算法思路

尽可能多的获得报酬,很容易想到背包问题,这里 d 是截止时间,那么我们可以用 m 来记录最大的截止时间,然后我们可以把所有物品按照 d 排序,从小到大枚举所有物品就 OK 了

code

#include<bits/stdc++.h>
using namespace std;
const int N  = 5050;
int t[N], d[N], p[N];
int n, m ;
int f[N];

struct node
{
	int t, d, p;
};
node a[N];
bool cmp(node a, node b)
{
	return a.d < b.d;
 } 
int main()
{
	int k;
	cin >> k;
	while(k --)
	{
		m = 0;
		cin >> n;
		for (int i = 1;i <= n; i ++)
		{
			cin >> a[i].t >> a[i].d >> a[i].p;
			m = max(m, a[i].d); 
		}
		sort(a + 1, a + 1 + n, cmp);
		for (int i = 0; i <= m; i ++)
			f[i] = 0;
		for (int i = 1;i <= n; i ++)
		{
			for (int j = a[i].d; j >= a[i].t; j --)
			{
				f[j] = max(f[j], f[j - a[i].t] + a[i].p);
			}
		}
		
		int ans = 0;
		for (int i = 0; i <= m; i++)
			ans = max(ans, f[i]);
		cout << ans << endl;
	}
	
	
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值