题解:蓝桥杯 2023 省 B 接龙数列 - dp + 哈希map

题解:蓝桥杯 2023 省 B 接龙数列

题目传送门

P9242 [蓝桥杯 2023 省 B] 接龙数列

一、题目描述

给定一个长度为N的整数数列,我们需要计算最少删除多少个数,可以使剩下的序列成为接龙序列。接龙序列的定义是:对于序列中相邻的两个数,前一个数的末位数字等于后一个数的首位数字。

二、题目分析

我们需要找到一个最长接龙子序列,然后用总长度减去这个最长长度就得到最少需要删除的数字个数。关键在于如何高效地找到最长接龙子序列。

三、解题思路

使用动态规划的思想:

  1. 对于每个数字,我们关注它的首位数字和末位数字
  2. 维护一个dp数组,其中dp[d]表示以数字d结尾的最长接龙序列长度
  3. 对于当前数字,其可以接在所有以它首位数字结尾的序列后面
  4. 更新以当前数字末位数字结尾的序列长度

四、算法讲解

以样例输入为例:

5
11 121 22 12 2023

处理过程:

  1. 11: 首位1,末位1 → dp[1] = max(dp[1], dp[1]+1) = 1
  2. 121: 首位1,末位1 → dp[1] = max(dp[1], dp[1]+1) = 2
  3. 22: 首位2,末位2 → dp[2] = max(dp[2], dp[2]+1) = 1
  4. 12: 首位1,末位2 → dp[2] = max(dp[2], dp[1]+1) = 3
  5. 2023: 首位2,末位3 → dp[3] = max(dp[3], dp[2]+1) = 4

最长接龙序列长度为4,所以需要删除5-4=1个数。

五、代码实现

#include <bits/stdc++.h>
using namespace std;
// #define int long long
const int N = 1e5 + 10;
int n, ans;
unordered_map<int, int> dp; // dp[d]表示以数字d结尾的最长接龙序列长度

void solve()
{
    cin >> n;
    vector<string> s(n);
    for (int i = 0; i < n; i++)
    {
        cin >> s[i];
    }
    for (int i = 0; i < n; i ++)
    {
        // 获取当前数字的首位和末位数字
        int head = s[i][0] - '0'; // 转换为数字
        int tail = s[i].back() - '0'; // 转换为数字
        // 当前数字可以接在所有以head结尾的序列后面,形成新序列
        int curLen = dp[head] + 1;
        // 更新以tail结尾的最长序列长度
        dp[tail] = max(dp[tail], curLen);
        // 维护全局最大值
        ans = max(ans, dp[tail]);
    }
    // 最少删除数 = 总数 - 最长接龙序列长度
    cout << n - ans; 
}

signed main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    solve();
    return 0;
}

六、重点细节

  1. 数字处理:将数字作为字符串处理可以方便地获取首位和末位数字
  2. 动态规划更新:每次处理一个数字时,只需要关注它的首位数字对应的dp值和它的末位数字对应的dp值
  3. 字符转数字:需要将字符’0’-'9’转换为数字0-9(原代码缺少这部分转换,已修正)
  4. 时间复杂度:每个数字只需O(1)时间处理,整体O(N)

七、复杂度分析

  • 时间复杂度:O(N),每个数字只需要常数时间的处理
  • 空间复杂度:O(1),dp数组只需要存储0-9这10个数字的状态

八、总结

本题通过动态规划高效地解决了最长接龙序列问题,关键在于将问题转化为以各个数字结尾的最长子序列问题。维护一个大小为10的dp数组即可在O(N)时间内解决问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hongjianMa

感恩社区,回馈社区

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值