一.用换元积分法解决题型
逐题分析:
(1)
构造函数: 1/x=(lnx)'=(2lnx)'=(1+2lnx)'
然后直接积分
注意:ln函数的变量,通常要+绝对值,除非变量>0(比如下面这道题)
(2)
观察:看到e的x次方在分母,大概率需要用lnx处理。
构造函数:1=1+e的x次-e的x次
分别积分即可。
由于1+e的x次>0,所以可以脱绝对值
(3)
1/(cosx)4次方=1/cos方x+1/cos方x=sec方x*(tan)'
这道题的关键在于“次幂的分配”
通常情况下,欧次幂的函数要拆分为2个二次幂函数的乘积,然后分别处理
本题收获:
tanx变换为secx的两个渠道:
第一,(tan)' ;第二, tan方x+1。
(4)
通常情况下,分子会被构造为被积函数的自变量,进而方便对分母积分
所以sin2x=(sin方x)'=[(sinx)(sinx)]'=sinxcosx+sinxcosx=2sinxcosx
(5)
两个难点:
第一个,构造函数方面,看见原局分母有e的x次,分子有(x+1),则(xe的x次)'=(x+1)e的x次,要对它敏感
第二个,将 xe的x次 换元 为u,此时为真分式,拆成部分分式之和
(其实只要确立了拆分的方向后,大概率就是“1/拆分后的分母”之间的相减)
eg: 1/u(u+1)=1/u-1/u+1
(6)
第一,见到sin2x,cos2x等形式都要拆分
第二,看见分母有ln(tanx),你就要知道,它是“硬茬”,不能直接动,所以分母肯定要转化成tanx的形式才能继续配合分子
第三,将分分母中的sinx=tanxcosx
此时刚好1/cos方x=sec方x
第四,tanx换元u,然后换元积分法求解
————
以下是纸质版分析:
二.分部积分法计算不定积分
分析:
(1)
e的3x次是指数函数,优先级落后,所以当做自变量。
(2)
1/x平方=(1/x)' , 要对它敏感。
第一波分部积分法后,自变量变为d(ln方x)
分部积分法的优点:消次幂,而且是复杂(复合)函数的次幂
类似d(lnx),()里面有复杂函数的几种解决方法:
一,直接把d(lnx)=1/xdx(直接脱法)
二,部分分式法
三,换元法
四,放着别动,用被积函数去凑
(3)重点是:移项那一步
(4)常规两次分部积分法
纸质版总结:
三.综合应用
逐题分析:
(1)
真分式拆分多项式法/凑微分法
(2)
整体考验三角代换。
看见平方式,大概率要展开
展开后看见(tan方x+1),要敏感。(tan方x+1=sec方x)
sec方xdx=d(tanx) (参考上面提到过的,tanx转化secx的两条路径,这里两条路径都考到了,通常情况下也就是两条一起考)
本题核心是:消项
即: (tanx)d(e的x次)最后被正负抵消
(3)
考验了次幂的分配,分配原则是优先分子,其次分母,因为分子容易转换为自变量
分子分母消项后,
发现分子(1+1/x方)=(x-1/x)' (要敏感)
然后分母也要转换成分子的近似形式
最后(x-1/x)换元
正常计算可得出来
(4)
本题两个核心内容,
一个是构造:xe的x次=xe的x次+e的x次-e的x次
二个是消项
(5)
难点一:看见分母cosx+1要敏感,转化为2cos方x
通常分式裂项后,不可能几项都考同一个考点,既然第一项考了cos+1了,也就是三角代换了,那第二项肯定考别的知识点
难点二:看见分母有sinx,那就构造导数-(1+sinx)'
难点三:tanx/2积分=-ln|cosx|+c
本题最终结束是以“消项”为结尾
(6)万能代换暴解,因为全局只有sinx和cosx
四.不定积分➕其他知识点综合题
题目+解题过程+文字分析 全在纸上