5.3 五分钟速通“不定积分”常见题型——《2026李林高数辅导讲义》

一.用换元积分法解决题型

 

 逐题分析:

(1)

构造函数:  1/x=(lnx)'=(2lnx)'=(1+2lnx)'

然后直接积分

注意:ln函数的变量,通常要+绝对值,除非变量>0(比如下面这道题)

(2)

观察:看到e的x次方在分母,大概率需要用lnx处理。

构造函数:1=1+e的x次-e的x次

分别积分即可。

由于1+e的x次>0,所以可以脱绝对值

(3)

1/(cosx)4次方=1/cos方x+1/cos方x=sec方x*(tan)'

这道题的关键在于“次幂的分配”

通常情况下,欧次幂的函数要拆分为2个二次幂函数的乘积,然后分别处理

本题收获:

tanx变换为secx的两个渠道:

 第一,(tan)' ;第二, tan方x+1。

(4)

通常情况下,分子会被构造为被积函数的自变量,进而方便对分母积分

所以sin2x=(sin方x)'=[(sinx)(sinx)]'=sinxcosx+sinxcosx=2sinxcosx

(5)

两个难点:

第一个,构造函数方面,看见原局分母有e的x次,分子有(x+1),则(xe的x次)'=(x+1)e的x次,要对它敏感

第二个,将  xe的x次   换元 为u,此时为真分式,拆成部分分式之和

(其实只要确立了拆分的方向后,大概率就是“1/拆分后的分母”之间的相减)

eg:     1/u(u+1)=1/u-1/u+1

(6)

第一,见到sin2x,cos2x等形式都要拆分

第二,看见分母有ln(tanx),你就要知道,它是“硬茬”,不能直接动,所以分母肯定要转化成tanx的形式才能继续配合分子

第三,将分分母中的sinx=tanxcosx

此时刚好1/cos方x=sec方x

第四,tanx换元u,然后换元积分法求解

————

以下是纸质版分析:

 

二.分部积分法计算不定积分

 

 

 

分析:

(1)

e的3x次是指数函数,优先级落后,所以当做自变量。

(2)

1/x平方=(1/x)'   , 要对它敏感。

第一波分部积分法后,自变量变为d(ln方x)

分部积分法的优点:消次幂,而且是复杂(复合)函数的次幂

类似d(lnx),()里面有复杂函数的几种解决方法:

一,直接把d(lnx)=1/xdx(直接脱法)

二,部分分式法

三,换元法

四,放着别动,用被积函数去凑

(3)重点是:移项那一步

(4)常规两次分部积分法

纸质版总结:

 三.综合应用

 

 

 

 

 逐题分析:

(1)

真分式拆分多项式法/凑微分法

(2)

整体考验三角代换。

看见平方式,大概率要展开

展开后看见(tan方x+1),要敏感。(tan方x+1=sec方x)

sec方xdx=d(tanx) (参考上面提到过的,tanx转化secx的两条路径,这里两条路径都考到了,通常情况下也就是两条一起考)

本题核心是:消项

即:  (tanx)d(e的x次)最后被正负抵消

(3)

考验了次幂的分配,分配原则是优先分子,其次分母,因为分子容易转换为自变量

分子分母消项后,

发现分子(1+1/x方)=(x-1/x)'  (要敏感)

然后分母也要转换成分子的近似形式

最后(x-1/x)换元

正常计算可得出来

(4)

本题两个核心内容,

一个是构造:xe的x次=xe的x次+e的x次-e的x次

二个是消项

(5)

难点一:看见分母cosx+1要敏感,转化为2cos方x

通常分式裂项后,不可能几项都考同一个考点,既然第一项考了cos+1了,也就是三角代换了,那第二项肯定考别的知识点

难点二:看见分母有sinx,那就构造导数-(1+sinx)'

难点三:tanx/2积分=-ln|cosx|+c

本题最终结束是以“消项”为结尾

(6)万能代换暴解,因为全局只有sinx和cosx

四.不定积分➕其他知识点综合题

题目+解题过程+文字分析 全在纸上

 

 

 

 

内容概要:《机器人综合基础实践教程》(入门篇、提篇)涵盖了机器人基础构建、编程控制、传感器应用等多个方面。教程从机械零件简介入手,逐步介绍主控板和编程环境的配置,随后过一系列实验引导读者动手实践,包括驱动轮模块、双轮万向车、红外启动小车、带传动模块、履带机器人、红绿灯等实验。这些实验不仅帮助读者理解基本原理,还涉及级应用如蓝牙电子温度计、语音识别、双轮小车平衡、蓝牙排爆机器人和WiFi视频排爆等。教程旨在培养读者的空间构型能力、编程技巧和综合调试能力,为机器人技术的实际应用打下坚实基础。 适用人群:具备一定编程基础和技术兴趣的学生、教师及爱好者,特别是对机器人技术感兴趣的初学者和中级学习者。 使用场景及目标:①帮助学生理解机器人基本原理,掌握机械零件组装和编程控制;②过实际操作,提升编程和调试技能;③为机器人竞赛、项目开发和创新实践提供理论和实践指导;④培养创新思维和解决实际问题的能力。 其他说明:教程不仅提供详细的实验步骤和代码示例,还配有丰富的参考资料和光盘课件,确保学习者能够全面理解和掌握知识点。此外,教程强调实践操作的重要性,鼓励学习者过动手实验加深理解,培养独立思考和解决问题的能力。
内容概要:本文档详细介绍了使用Visio绘制ER图的方法,首先阐述了ER图的三个基本要素:实体、属性、关系,并解释了Visio中没有现成模板的问题以及解决方案,即过自定义模具的方式添加所需的图形元素。接着描述了绘制ER图的两种主要方式:手动绘制和利用Visio的反向工程技术。对于手动绘制,文中以留言板据库为例,具体演示了从创建实体、设置属性到建立实体间关系的全过程。而对于反向工程,则强调了其效性,支持多种据库类型,如Access、MSSQL、Excel等,并给出了详细的步骤说明,包括设置反向工程参、选择据库路径、指定生成的表等关键环节。 适合人群:适合有一定据库基础知识,尤其是正在学习或从事据库设计工作的人员,包括但不限于据库管理员、软件开发者、系统分析师等。 使用场景及目标:①帮助用户掌握Visio绘制ER图的基本技能,能够独立完成简单据库的ER图设计;②利用Visio的反向工程功能快生成复杂据库的ER图,提工作效率;③理解实体、属性、关系三者之间的逻辑关联,为后续据库设计提供理论依据。 阅读建议:建议读者按照文档中的步骤逐步操作练习,同时结合实际项目需求,灵活运用所学知识,特别是对于反向工程部分,可以尝试不同类型的据库以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值