【神经网络算法的介绍】

在这里插入图片描述

🌈个人主页: 程序员不想敲代码啊
🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家
👍点赞⭐评论⭐收藏
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

在这里插入图片描述

🏆1. 前言

🤝神经网络算法是一种模仿人脑神经元工作方式的算法,在人脑中,成千上万的神经元通过突触相互连接,进行信息处理。在计算机科学中,神经网络是由大量的工作节点(或称为“神经元”)相互联络而成的网络结构,用于执行复杂的数据处理任务。

🏆2. 基本的神经网络元素

1. 🤝神经元(Neuron)

  • 🤝输入(Input):神经元接收来自外部的输入信号或其它神经元的输出。
  • 🤝权重(Weights):每个输入都有一个相关的权重,它代表了该输入的重要性。
  • 🤝激活函数(Activation Function):神经元计算所有输入与权重的加权和,此加权和通过激活函数来决定是否和如何激活当前神经元。

2. 🤝网络结构

  • 🤝输入层(Input Layer):接收原始数据输入。
  • 🤝隐藏层(Hidden Layers):处理输入后的数据,实际的复杂计算在这里进行。可以有多个隐藏层。
  • 🤝输出层(Output Layer):输出最终结果。

🏆3. 工作流程

  1. 🤝前向传播(Forward Propagation)

    • 🤝从输入层开始,原始数据输入网络。
    • 🤝数据在每一层被神经元处理,权重对数据进行加权,激活函数再对加权和做非线性映射。
    • 🤝数据传递到输出层,得到初步的输出结果。
  2. 🤝损失函数(Loss Function)

    • 🤝损失函数计算网络输出与实际值之间的误差。
    • 🤝常见的损失函数包括均方误差(MSE),交叉熵损失(Cross-Entropy Loss)等。
  3. 🤝反向传播(Backpropagation)

    • 🤝根据损失函数的结果,通过微积分中的链式法则,计算损失函数关于每个权重的梯度(即权重的更新方向)。
    • 🤝梯度告诉我们如何更新权重以减少误差。
  4. 🤝权重更新(Weights Update)

    • 🤝使用一种优化算法(比如随机梯度下降)来更新权重,以最小化损失函数。
    • 🤝学习率(Learning Rate)决定了更新的步长大小。

🏆4. 激活函数(Activation Function)

🤝激活函数的作用是增加神经网络的非线性,没有它们的话,不管网络有多少层相当于只做了线性变换,无法解决复杂问题,常见的激活函数包括:

  • 🤝Sigmoid
  • 🤝Tanh
  • 🤝ReLU(Rectified Linear Unit)
  • 🤝Softmax(最常用于多分类问题的输出层)

🏆5. 优化器(Optimizer)

🤝它们定义权重更新的具体算法,常见的优化器有:

  • 🤝随机梯度下降(SGD)
  • 🤝Momentum
  • 🤝Adam
  • 🤝RMSprop

🏆6. 神经网络的训练

🤝训练神经网络通常涉及前向传播、损失计算、反向传播和权重更新几个步骤的迭代,这个循环重复执行直到网络达到满意的性能或预定的训练次数。

🤝神经网络通过这样反复的训练过程,不断调整权重,从而能够越来越好地近似或分类所给的数据,实现从数据中学习的目的。随着深度学习的发展,神经网络变得更深(更多的层)、更复杂(如卷积神经网络,递归神经网络等),能够在图像识别、语音识别、自然语言处理等领域取得了显著的成果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值