🌈个人主页: 程序员不想敲代码啊
🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家
👍点赞⭐评论⭐收藏
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!
🏆1. 前言
🤝神经网络算法是一种模仿人脑神经元工作方式的算法,在人脑中,成千上万的神经元通过突触相互连接,进行信息处理。在计算机科学中,神经网络是由大量的工作节点(或称为“神经元”)相互联络而成的网络结构,用于执行复杂的数据处理任务。
🏆2. 基本的神经网络元素
1. 🤝神经元(Neuron)
:
- 🤝输入(Input):神经元接收来自外部的输入信号或其它神经元的输出。
- 🤝权重(Weights):每个输入都有一个相关的权重,它代表了该输入的重要性。
- 🤝激活函数(Activation Function):神经元计算所有输入与权重的加权和,此加权和通过激活函数来决定是否和如何激活当前神经元。
2. 🤝网络结构
:
- 🤝输入层(Input Layer):接收原始数据输入。
- 🤝隐藏层(Hidden Layers):处理输入后的数据,实际的复杂计算在这里进行。可以有多个隐藏层。
- 🤝输出层(Output Layer):输出最终结果。
🏆3. 工作流程
-
🤝前向传播(Forward Propagation)
:- 🤝从输入层开始,原始数据输入网络。
- 🤝数据在每一层被神经元处理,权重对数据进行加权,激活函数再对加权和做非线性映射。
- 🤝数据传递到输出层,得到初步的输出结果。
-
🤝损失函数(Loss Function)
:- 🤝损失函数计算网络输出与实际值之间的误差。
- 🤝常见的损失函数包括均方误差(MSE),交叉熵损失(Cross-Entropy Loss)等。
-
🤝反向传播(Backpropagation)
:- 🤝根据损失函数的结果,通过微积分中的链式法则,计算损失函数关于每个权重的梯度(即权重的更新方向)。
- 🤝梯度告诉我们如何更新权重以减少误差。
-
🤝权重更新(Weights Update)
:- 🤝使用一种优化算法(比如随机梯度下降)来更新权重,以最小化损失函数。
- 🤝学习率(Learning Rate)决定了更新的步长大小。
🏆4. 激活函数(Activation Function)
🤝激活函数的作用是增加神经网络的非线性,没有它们的话,不管网络有多少层相当于只做了线性变换,无法解决复杂问题,常见的激活函数包括:
- 🤝Sigmoid
- 🤝Tanh
- 🤝ReLU(Rectified Linear Unit)
- 🤝Softmax(最常用于多分类问题的输出层)
🏆5. 优化器(Optimizer)
🤝它们定义权重更新的具体算法,常见的优化器有:
- 🤝随机梯度下降(SGD)
- 🤝Momentum
- 🤝Adam
- 🤝RMSprop
🏆6. 神经网络的训练
🤝训练神经网络通常涉及前向传播、损失计算、反向传播和权重更新几个步骤的迭代,这个循环重复执行直到网络达到满意的性能或预定的训练次数。
🤝神经网络通过这样反复的训练过程,不断调整权重,从而能够越来越好地近似或分类所给的数据,实现从数据中学习的目的。随着深度学习的发展,神经网络变得更深(更多的层)、更复杂(如卷积神经网络,递归神经网络等),能够在图像识别、语音识别、自然语言处理等领域取得了显著的成果。