AcWing-直方图中最大的矩形

文章介绍了如何利用单调栈数据结构解决直方图中找到最大矩形的问题,通过维护栈的单调性,预处理出每个元素前后小于其高度的边界,从而快速计算出最大矩形的面积。给出C++代码示例,包括使用标准库stack和自定义数组模拟栈的方法。
摘要由CSDN通过智能技术生成

131. 直方图中最大的矩形 - AcWing题库

所需知识:单调栈

思路:要求最大矩形,所以需要使矩形的高与长的乘积最大即可,依次从左到右将每一列当作中心列,向两边扩散,直到两边的高都小于该列的高,即为以该列为中心的最大矩形面积(中心不一定在整块矩形的正中间)

例:

该图中从3到5这块矩形的中心可以为3或者4或者5;

依次遍历每一列即可得出所有直方图中的最大矩形。

若在遍历列的时候再去判断它前面或后面的列的高度是否小于它,则需要o(n2),显然数据范围过大,只能过一部分数据,我们考虑将每列的前方与后方的第一个小于它高度的列预处理出来(利用单调栈);

单调栈:整个栈内的数据严格单调,该题为单调递减栈(即入栈元素必须小于栈顶元素,不然就将栈顶元素pop掉,然后继续判断,直到栈内没有比他大的元素了,此时栈顶则为该区间最小值);

可以利用c++的stack,或者自己用数组模拟一个栈(据说自己用数组模拟跑出来更快)

C++代码:(利用stack)

#include<iostream>
#include<stack>
#include <vector>
#include<algorithm>
const int N=1e5+10;
typedef long long ll;
using namespace std;
int n;
ll h[N],l[N],r[N];
int main(){
    while(cin>>n,n){
        for(int i=1;i<=n;i++){
            cin>>h[i];
        }
        stack<int>st;
        h[0]=h[n+1]=-1;//将数组边界变成-1,不可能有高度比-1小,就可以不用特判边界了
        st.push(0);
        for(int i=1;i<=n;i++){
            while(h[st.top()]>=h[i])st.pop();//维护栈的单调性
            l[i]=st.top();//此时栈顶元素即为第一个小于h[i]的下标
            st.push(i);//将每个元素都入一次栈
        }
        //将左边的算出来后清空栈,计算右边的
        while(!st.empty()){
            st.pop();
        }
        //与左边同理,模拟一遍
        st.push(n+1);
        for(int i=n;i>0;i--){
            while(h[st.top()]>=h[i])st.pop();
            r[i]=st.top();
            st.push(i);
        }
        ll res=0;
        for(int i=1;i<=n;i++){
            res=max(res,(r[i]-l[i]-1)*h[i]);
        }
        cout<<res<<endl;
    }
    return 0;
}

C++代码:(用数组模拟stack)

//基本思路与上面一样,只不过栈变成数组了
#include<iostream>
#include <vector>
#include<algorithm>
const int N=1e5+10;
typedef long long ll;
using namespace std;

int n;
ll h[N],l[N],r[N];
int st[N];
int main(){
    while(cin>>n,n){
        for(int i=1;i<=n;i++){
            cin>>h[i];
        }
        h[0]=h[n+1]=-1;
        int tt=0;
        st[++tt]=0;
        for(int i=1;i<=n;i++){
            while(h[st[tt]]>=h[i]) tt--;//tt--模拟数组中pop
            l[i]=st[tt];
            st[++tt]=i;//将i加入栈中
        }
        tt=0;
        st[++tt]=n+1;
        for(int i=n;i>0;i--){
            while(h[st[tt]]>=h[i]) tt--;
            r[i]=st[tt];
            st[++tt]=i;
        }
        ll res=0;
        for(int i=1;i<=n;i++){
            res=max(res,(r[i]-l[i]-1)*h[i]);
        }
        cout<<res<<endl;
    }
    return 0;
}

tips:最后注意开long long;还有h[st[tt]]>=h[i] 中的 '=' 因为要求比h [i] 小的元素,所以相等也满足;将h[0]=h[n+1]=-1;可以不用特判边界

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值