pandas入门

1.学习了如何在python环境中安装numpy和pandas两种数据库

2.讲述了pandas是一种利用代码进行数据处理的工具

3.跟随课堂老师所讲在jupyter中进行操作从而对数据进行了读取及操作

4.作业讲解中对于自己的操作有了更深入的理解,得以复习巩固

### 推荐的Pandas入门教程与练习资源 对于希望深入学习Pandas库的新手而言,有多种优质的学习材料可供选择。 #### 1. 官方文档入门部分 官方文档提供了详尽的基础介绍以及丰富的实例说明,适合有一定编程基础的学习者自行探索[^1]。这部分资料不仅覆盖了核心概念讲解,还包含了实际案例分析,有助于理解如何应用这些工具解决现实世界中的数据分析挑战。 #### 2. Python for Data Analysis书籍 此书由Wes McKinney编写,作为Pandas项目的创始人之一,书中通过具体项目引导读者逐步掌握利用Python处理结构化数据的方法和技术。特别是前几章节特别适合作为初学者了解Pandas特性和工作流程的理想起点。 #### 3. Kaggle Learn平台上的Pandas模块 这是一个交互式的在线课程系列,专为零基础学员设计,采用循序渐进的方式教授知识点并配有即时反馈机制来检验所学成果。它能够有效提升动手能力的同时也增加了趣味性,使得整个学习过程更加轻松愉快。 #### 4. GitHub仓库整理版教程 存在一个GitHub仓库专门收集了一系列高质量的教学文章、笔记和代码片段,旨在帮助新手更快地上手Pandas的各种实用技巧[^2]。这份综合性的指南几乎囊括了一切必要的主题领域——从最基础的概念直到高级特性应有尽有,而且持续更新维护中。 #### 实践建议 为了巩固理论知识,在掌握了上述任一教材之后可以尝试参与一些小型的数据清洗或可视化项目实践;也可以加入像Kaggle这样的社区参加竞赛活动,与其他爱好者交流心得共同进步。 ```python import pandas as pd # 创建简单的 DataFrame 示例 data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'City': ['New York', 'Los Angeles', 'Chicago']} df = pd.DataFrame(data) print(df) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值